深度学习
Leon.ENV
Never Limit
展开
-
深度学习-吴恩达-笔记-7-超参数调试、Batch正则化和程序框架
调试处理神经网络涉及到很多的超参数。参数调试的优先级或重要程度如下(从高到低):学习速率 ????动量梯度下降法 ???? = 0.9隐藏层单元数mini-batch 批次大小网络层数学习率衰减????1, ????2和 ????注意:参数调试的优先级并不是固定的,只是建议的优先级。随机取值方式:这里假设有两个超参数(左右图都是25的点)。避免采用左图的网格取值方式:这是有规律的取值,参数较少时还好,但不适用参数较多的情况。原创 2020-12-01 16:30:11 · 1049 阅读 · 0 评论 -
深度学习-吴恩达-笔记-6-优化算法
Mini-batch 梯度下降之前的梯度下降法,在每一次迭代时都处理了全部的样本数据,如果样本过大,一次迭代会变得非常慢。训练样本:实际输出值:mini-batch 梯度下降法就是把全部训练集分割成数量相等的多个小批次集,一次迭代只处理一个小批次集,直到遍历迭代完所有的小批次集即可。把训练集 ???? 分成 ???? 等份,同样,把 ???? 也分成 ???? 等份,得到以下符号::表示第 ???? 个小批次集的训练样本。:表示第 ???? 个原创 2020-11-30 14:26:20 · 1884 阅读 · 1 评论 -
深度学习-吴恩达-笔记-5-深度学习的实践层面
训练、验证、测试集应用深度学习是一个典型的迭代过程,需要多次循环往复,才能为应用程序找到一个称心的神经网络,因此循环该过程的效率是决定项目进展速度的一个关键因素,而创建高质量的训练集,验证集和测试集也有助于提高循环效率。在机器学习发展的小数据量时代,常见做法是将所有数据三七分,就是常说的 70% 验证集, 30%测试集,如果没有明确设置验证集,也可以按照 60%训练, 20%验证集和 20%测试集来划分。这是前几年机器学习领域普遍认可的较好的实践方法。 如果只有 100 条, 1000 条...原创 2020-11-27 16:33:51 · 2198 阅读 · 0 评论 -
深度学习-吴恩达-笔记-4-深层神经网络
深层神经网络有一个隐藏层的神经网络,就是一个两层神经网络。神经网络的层数不包含输入层,只包含隐藏层和输出层。深度学习的符号定义:上图是一个四层的神经网络,有三个隐藏层, 输入层是第 0 层。L 表示层数, 输入层的索引为“0”。第一个隐藏层,表示有 5个隐藏神经元。输入层。记作 ???? 层激活后结果。 记作 ???? 层计算 值的权重。输入的特征记作 ????,但是 ???? 同样也是 0 层的激活函数,所以。...原创 2020-11-26 15:35:53 · 2062 阅读 · 0 评论 -
深度学习-吴恩达-笔记-3-浅层神经网络
神经网络概述神经网络看起来如下这个样子,也就是把许多sigmoid 单元堆叠起来形成一个神经网络:整个计算过程如下:第一层前向传播:第一层反向传播:第二层反向传播:神经网络的表示本例中的神经网络只包含一个隐藏层:神经网络的符号定义:计算一个神经网络的输出隐藏层的计算输出过程:隐藏层的输出的详细结果如下: ...原创 2020-11-25 11:28:35 · 2135 阅读 · 0 评论 -
深度学习-吴恩达-笔记-2-神经网络的编程基础
二分类判断一个对象是否属于某个分类,其结果只有两种,是或否。逻辑回归逻辑回归是一个用于二分类的算法。逻辑回归的假设函数是 sigmoid 函数:逻辑回归的代价函数逻辑回归中用到的损失函数是(单个训练样本):逻辑回归的代价函数是对????个样本的损失函数求和然后除以????:梯度下降法通过最小化代价函数(成本函数) ????(????, ????)来训练的参数????和????:梯度下降法的形象化说明(这里原创 2020-11-23 10:52:23 · 1821 阅读 · 0 评论 -
深度学习-吴恩达-笔记-1-深度学习引言
什么是神经网络让我们从一个房价预测的例子开始讲起,如根据房子面积来预测房屋价格。如果你对线性回归很熟悉, 可以用一条直线来拟合这些数据。但是房屋的价格永远不会是负数的,因此,可以把价格为负数的部分变成零,让它最终在零结束。这条粗的蓝线最终的预测函数,用于根据房屋面积预测价格。在有关神经网络的文献中,你经常看得到这个函数。从趋近于零开始,然后变成一条直线。这个函数被称作 ReLU 激活函数,它的全称是 Rectified Linear Unit。 rectify(修正)可以...原创 2020-11-20 14:55:14 · 1794 阅读 · 0 评论