逆矩阵的概念、应用和求解

目录

逆矩阵的概念

求解逆矩阵

应用例子

可能没有逆矩阵

求解逆-方法1:初等行运算(高斯-若尔当)

求解逆-方法2:余子式、代数余子式和伴随

求解逆-方法3:程序库


逆矩阵的概念


矩阵运算中,是没有除法的,也就是不能除以一个矩阵,这时就需要逆矩阵了。

注意:矩阵一定是方正(行和列的数目相同),才能有逆矩阵。

假设知道矩阵 A 和 B,而需要求矩阵 X:

这里不能除以矩阵A(X=B/A),但是可以每边都乘以  :

因为 A = I (I 是单位矩阵),所以:

最后得出 :

 

求解逆矩阵


逆矩阵求解公式:

调换 a 和 d 的位置,把 负号放在 b 和 c 前面,然后除以矩阵的行列式(ad-bc)。

 

应用例子


题目:一帮人坐公交车,车费是小孩¥3,大人¥3.2,总共是¥118.4。回程他们搭地铁,车费是小孩¥3.5,大人¥3.6,总共是¥135.2。请问几个小孩和几个大人?

解:设小孩 x1个,大人x2个。

先求左侧矩阵的逆:

得出结果:

 

答:16个小孩,22个大人。

 

可能没有逆矩阵


如果矩阵的行列式为零,这时就没有逆矩阵。如:

这种矩阵叫 "降秩矩阵",就是行列式为零的矩阵。

从该矩阵看出,第二行是第一行的两倍(或n倍),它们的行列式一定是零,这并没有提供新的信息或特征。

如上面的例子中,如果地铁的车费全是比公交车贵一半,我们便不能找出大人和小孩的分别。一定要有某些信息或特征来区别他们的不同,才可以算出小孩和大人的数量。

 

求解逆-方法1:初等行运算(高斯-若尔当)


计算 2x2 矩阵的逆是很容易的,但是计算更大的矩阵就比较复杂了。

这里介绍一种求解大矩阵的逆的方法:初等行运算(高斯-若尔当)。求解方法:

把矩阵 A 和 单位矩阵 I 放到一起,然后通过运算把 A 变成 I,这时 I 就变成了

例子:求 A 的逆矩阵。解:

直观理解该方法:

 

求解逆-方法2:余子式、代数余子式和伴随


余子式、代数余子式和伴随来求逆矩阵,计算过程比较繁琐。有以下步骤:

1、求余子式矩阵

2、转成代数余子式矩阵

3、转成伴随矩阵

4、乘以 1/行列式

例子:求 A 的逆矩阵。解:

余子式矩阵(计算行列式):

代数余子式矩阵(加入相隔正负号):

转成伴随矩阵(转置):

乘以 1/行列式:

矩阵A的行列式 = 3×2 - 0×2 + 2×2 = 10

 

求解逆-方法3:程序库


1、使用 Octave 中的 pinv(A)。

2、使用 Python 中 numpy.linalg.inv(A)。

 

  • 55
    点赞
  • 220
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
《矩阵理论与应用》是由陈公宁编写的一本关于矩阵理论及其应用的教材或参考书。矩阵理论是线性代数的一个重要分支,研究矩阵的性质、运算规则以及它们在各个应用领域中的具体应用。这本书详细介绍了矩阵的基本概念、性质和运算法则,并结合具体应用领域的案例进行讲解。 这本书的内容包括但不限于以下几个方面: 1. 矩阵的定义和基本运算:介绍了矩阵的定义,以及加法、减法和乘法等基本运算法则。 2. 矩阵的转置和共轭:详细介绍了矩阵的转置和共轭的概念及运算法则。 3. 矩阵的逆和行列式:讲解了可逆矩阵的判定条件、求解逆矩阵的方法,以及行列式的定义和性质。 4. 特征值和特征向量:介绍了特征值和特征向量的概念,以及它们在矩阵相似变换和对角化中的应用。 5. 矩阵的标准形和正交相似:详细讲解了对称矩阵的主轴定理,以及正交矩阵和对称矩阵的相似性。 除了上述基础理论的讲解外,这本书还涉及了矩阵的应用领域。例如,在线性方程组的求解中,矩阵可以通过高斯消元法进行运算。在网络分析和电路理论中,矩阵代表了节点之间的关系和电路的性质。此外,矩阵在数据处理、信号处理、图像处理等领域也有广泛应用。 总的来说,《矩阵理论与应用》这本书是一本系统全面介绍矩阵理论及其应用的教材,对于学习线性代数和矩阵运算的人士来说,具有很高的参考价值。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值