数学
文章平均质量分 57
包括离散数学,优化理论等
给点sun,就shine
这个作者很懒,什么都没留下…
展开
-
osqp的原理ADMM(交替方向乘子法)理解
考虑以下问题:其对应的增强拉格朗日函数(augmented Lagrangian)为:重点来了,交替求解原始变量x1,x2x_{1},x{2}x1,x2和对偶变量ν\nuν.要注意的是对偶变量要在原始变量更新后更新。原创 2022-10-31 15:15:14 · 1836 阅读 · 0 评论 -
优化问题分类和定义
的线性函数,则称为线性最小二乘(LLSQ, linear least squares), 否则称为非线性中最小二乘(NLLSQ,nonlinear least squares)。如果线性最小二乘中,除了要尽量曲线拟合外,还有一些应用上的要求,比如一定要经过某个点,那么这种带约束的问题,称之为约束线性最小二乘(constrained linear least squares)。图中蓝色区域为约束的可行域,直线代表目标函数的最佳取值,而直线与可行域的交点即为解X。不等式约束:仿射函数的范数。原创 2022-11-01 17:13:55 · 1330 阅读 · 0 评论 -
了解Nonlinear Complementarity Problem (NCP,非线性互补问题)
在数学上,如果说xxx与yyy互补,则x≥0,y≥0,andxTy=0x≥0,y≥0,andxTy=0或者说0≤x⊥y≥00≤x⊥y≥0。原创 2022-11-01 15:09:20 · 1283 阅读 · 0 评论 -
凸优化问题定义及其凸函数、凸集、仿射函数相关概念和定义
对于凸子集C中任意两个向量x1x_{1}x1、x2x_{2}x2有f((x1+x2)/2)≤(f(x1)+f(x2))/2f((x1+x2)/2)≤(f(x1)+f(x2))/2成立。原创 2022-10-28 20:22:27 · 1418 阅读 · 0 评论 -
OSQP出现 “P is not upper triangular“的solution
一般我都是写好eigen矩阵,所以为了方便使用,将eigen矩阵转化为csc矩阵所需要的参数写成一个函数,好方便调用。由于新的版本考虑了P矩阵中要是对称的一个矩阵,然后为了减少一个空间的使用情况,所以是只存储上三角部分。为了方便大家更好的理解,直接通过osqp的一个demo:osqp.c来举例,完整的代码如下。1.更换0.5.0版本的osqp.主要的思想可以用里面的一张图概括。原创 2022-10-27 11:02:45 · 956 阅读 · 1 评论 -
运筹学(三)---KKT条件
4.难点在于讨论方程的解(如果有无限个解),因此一般来说,我主要是借鉴这个思想,但是并不会真的一个一个去解方程组。2.需要注意的是,弱约束 ex原创 2022-10-11 15:30:25 · 271 阅读 · 0 评论 -
运筹学(二)---高数基础
eg: 原本要求z = f(x,y),g(x,y) = 0条件下的极大极小值,但是这个问题可以转化为 z1 = f(x,y) +**需要注意的是:**这个方法已经是非常成熟的一个模板,但是我个人认为这个给我们更多地提供了一个数学思想:等价转换。g ,因为g = 0, 所以在满足约束条件g = 0的条件下,z1 的最值就是z的最值。另外,这里也用到了费马定理的思想,也是利用极值点可能存在于导数为0的点。f(x0)为极值,且f’(x0) 可导-》f’(x0) = 0。求函数求极值-》求导数/偏导数。原创 2022-10-08 16:07:17 · 401 阅读 · 0 评论 -
运筹学笔记(-)----导论
5.考虑函数实际问题:自然定义域(数学背景下)-》真实定义域(实际情况)求导(一元按)-》拉格朗日乘数法(强约束、多元)-》KKT(弱约束)4.单纯形法:解决线性规划的特殊方法,相比KKT方法可以简化解。How:数学建模-》求解(求导、拉格朗日、KKT、单纯形法)6.多元函数只判断最值而不找极值?7.线性代数本质:折腾方程组提取信息。数学建模-》找到最优解/可行解。Δ判别法(hessian矩阵)What:求解生活问题最优解。1.目的:寻找决策最优解。Eg:企业人数与盈利问题。原创 2022-10-07 13:16:33 · 268 阅读 · 0 评论 -
离散 排斥或与相容或的区别
1.相同之处:就是“或”2.不同之处:一个排斥,一个相容 p:2是偶数 q:2是奇数,这种情况下是排斥或,也即一个命题成立,则其他命题不成立 p:2是偶数 q:4是偶数,这种情况下是相容或,也即该命题成立,不影响其他命题成立与否,所有命题可以同时成立。3.表达式排斥或:(p∧﹁q)V(﹁p∧q)相容或:pVq若有不正确之处,还请不吝赐教,感谢~...原创 2021-03-09 13:29:42 · 12795 阅读 · 4 评论 -
匹配、支配集、覆盖集、独立集的概念
1.匹配:也即边独立集,至多多少条边能使顶点互相独立,这些边所组成的集合。2.点独立集:至多多少个点能使边互相独立,这些点所组成的集合。3.点覆盖集:至少多少个点才能覆盖图的所有边,这些点所组成的集合。4.边覆盖集:至少多少条边才能覆盖所有的点,这些边所组成的集合。5.支配集:将点分成两个集合,使得点一个集合的点u能在另外一个集合找到一个点v,使得(u,v)∈E,E为图的边的集合。那么由点v组成的集合为支配集。以上为自己理解后的描述语言,如有错误之处,欢迎批评指正。...原创 2020-05-18 09:01:29 · 892 阅读 · 0 评论 -
图论支配集、点独立集、点覆盖集
点支配集:给定无向图G =(V , E),其中V是点集, E是边集, 称V的一个子集S称为支配集当且仅当对于V-S中任何一个点v, 都有S中的某个点u, 使得(u, v) ∈E。举个例子:下图的极小支配集为{V1,V5},{V3,V6},{V2,V4,V6}极小指如果再减小集合的任一一个顶点都不能构成支配集该图的支配数为2,即至少需要两个顶点才能构成支配集...原创 2020-03-28 15:27:21 · 3186 阅读 · 0 评论 -
离散轮图、简单图
七阶轮图-》奇阶轮图六阶轮图-》偶阶轮图**defination:n阶轮图:在n-1阶圈内放置一,个顶点,连接这个顶点与这个圈轮上的所有顶点,所得的n阶简单图称作n阶轮图,记做Wn。奇阶轮图:n为奇数的轮图。偶阶轮图:n为偶数的轮图。简单图:无重复边且无自环。**非简单图例子:有重复边有自环的非简单图(顶点A有自环)...原创 2020-03-27 22:54:24 · 10734 阅读 · 0 评论 -
简单回路与初级回路(圈)区别
1.回路:起点终点相同简单通路:起点到终点所经过的边不同简单回路:起点到终点所经过的边不同+回路初级通路:起点到终点所经过的顶点各异+简单通路初级回路/圈:起点到终点所经过的顶点除起点终点相同外,其余顶点各异+简单回路2.总结:简单=边不同初级=边不同+点不同回路=起终点一致...原创 2020-03-22 19:21:07 · 18696 阅读 · 1 评论