优化问题分类和定义

1.linear programming (LP,线性规划)

在这里插入图片描述
不等式约束:
目标函数:仿射函数
不等式约束:仿射函数
可行域:polyhedron set(多面体集?)
solution: 单纯形法。对偶单纯形法,原始对偶方法、分解算法、多项式时间算法、图解法

1.1 LP 例子以及matlab求解代码

求解下面线性规划问题
min ⁡ Z = − 4 a + b + 7 c  s. t.  { a + b − c = 5 3 a − b + c ⩽ 4 a + b − 4 c ⩽ − 7 a , b ⩾ 0 \begin{aligned}&\min Z=-4 a+b+7 c \\&\text { s. t. }\left\{\begin{array}{l}a+b-c=5 \\3 a-b+c \leqslant 4 \\a+b-4 c \leqslant-7 \\a, b \geqslant 0\end{array}\right.\end{aligned} minZ=4a+b+7c s. t.  a+bc=53ab+c4a+b4c7a,b0

求解代码

clc
% objective function
f=[-4 1 7];

% inequalities
A=[3 -1 1;1 1 -4]; 
b=[4;-7]; 

% equalities
Aeq=[1 1 -1];
beq=[5];

% the range of x
vlb=[0,0]; 
vub=[];

[x,fval] = linprog(f,A,b,Aeq,beq,vlb, vub)

solution:
在这里插入图片描述

2.quadratic programming (QP,二次规划)


特点:
目标函数: P P P需要半正定
不等式约束:仿射函数
可行域:polyhedron set(多面体集?)

3.second-order cone programming (SOCP,二阶锥规划)

在这里插入图片描述
特点:
不等式约束:仿射函数的范数 ≤ \leq 仿射函数

形如 ∥ A i x + b i ∥ 2 − c i ⊤ x − d i ≤ 0 \left\|\boldsymbol{A}_i \boldsymbol{x}+\boldsymbol{b}_i\right\|_2-\boldsymbol{c}_i^{\top} \boldsymbol{x}-d_i \leq 0 Aix+bi2cixdi0的式子称为二阶锥,它形如冰淇淋状

4.Semidefinite progranmming(SDP,半定规划)

4.1 形式一

在这里插入图片描述
特点
tr ⁡ ( ⋅ ) \operatorname{tr}(\cdot) tr()代表矩阵的迹
变量X 属于positive semidefinite cone(半正定锥?)
$ C, D_{i},A_{i}$ 属于 semidefinite cone(正定锥?)

4.2 形式二

在这里插入图片描述
特点:
G , F i G,F_{i} G,Fi属于semidefinite cone(正定锥?)

5.nonlinear programming (NLP,非线性规划)

特点:
目标函数或约束存在非线性函数
例如:
约束中存在非线性函数的例子
在这里插入图片描述在这里插入图片描述

图中蓝色区域为约束的可行域,直线代表目标函数的最佳取值,而直线与可行域的交点即为解X。

6.least squares(LSQ,最小二乘)

问题:求解曲线拟合
在这里插入图片描述
对于该问题的一个目标函数定义为:
min ⁡ ∑ i = 1 m L i 2 ( x ) = min ⁡ ∑ i = 1 m L i 2 [ y i , f ( x i ) ] = min ⁡ ∑ i = 1 m [ y i − f ( x i ) ] 2 \min \sum_{i=1}^m L_i^2(x)=\min \sum_{i=1}^m L_i^2\left[y_i, f(x_i)\right]=\min \sum_{i=1}^m\left[y_i-f(x_i)\right]^2 mini=1mLi2(x)=mini=1mLi2[yi,f(xi)]=mini=1m[yif(xi)]2
其中 L i ( x ) ( i = 1 , 2 , ⋯   , m ) L_{i}(x)(i = 1,2,\cdots,m) Li(x)(i=1,2,,m)称为残差函数,如果 L i ( x ) ( i = 1 , 2 , ⋯   , m ) L_{i}(x)(i = 1,2,\cdots,m) Li(x)(i=1,2,,m) x x x的线性函数,则称为线性最小二乘(LLSQ, linear least squares), 否则称为非线性中最小二乘(NLLSQ,nonlinear least squares)。如果线性最小二乘中,除了要尽量曲线拟合外,还有一些应用上的要求,比如一定要经过某个点,那么这种带约束的问题,称之为约束线性最小二乘(constrained linear least squares)。

7.(SQP,序列二次规划)

考虑一个非线性规划问题,但是要求目标函数和约束条件都需要二阶连续可微
在这里插入图片描述
在第k次迭代时,可以通过求解下面SQP子问题为其确定迭代方向 d k d_{k} dk
在这里插入图片描述

8.多目标线性规划问题

目标函数为多个的线性规划问题,由于多个目标之间的矛盾性和不可公度性,一般没办法使得所有目标函数都达到最优,往往只是求其有效解
solution: 理想点法,线性加权和法,最大最小法,目标规划法
具体可参考:https://blog.csdn.net/sinat_23971513/article/details/110501496

reference:

1.KKT Conditions, First-Order and Second-Order Optimization, and Distributed Optimization: Tutorial and Survey
2.https://baike.baidu.com/item/%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%B3%95/2522346?fr=kg_general(最小二乘法)
3.https://en.wikipedia.org/wiki/Sequential_quadratic_programming(SQP)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值