优化问题分类和定义

1.linear programming (LP,线性规划)

在这里插入图片描述
不等式约束:
目标函数:仿射函数
不等式约束:仿射函数
可行域:polyhedron set(多面体集?)
solution: 单纯形法。对偶单纯形法,原始对偶方法、分解算法、多项式时间算法、图解法

1.1 LP 例子以及matlab求解代码

求解下面线性规划问题
min ⁡ Z = − 4 a + b + 7 c  s. t.  { a + b − c = 5 3 a − b + c ⩽ 4 a + b − 4 c ⩽ − 7 a , b ⩾ 0 \begin{aligned}&\min Z=-4 a+b+7 c \\&\text { s. t. }\left\{\begin{array}{l}a+b-c=5 \\3 a-b+c \leqslant 4 \\a+b-4 c \leqslant-7 \\a, b \geqslant 0\end{array}\right.\end{aligned} minZ=4a+b+7c s. t.  a+bc=53ab+c4a+b4c7a,b0

求解代码

clc
% objective function
f=[-4 1 7];

% inequalities
A=[3 -1 1;1 1 -4]; 
b=[4;-7]; 

% equalities
Aeq=[1 1 -1];
beq=[5];

% the range of x
vlb=[0,0]; 
vub=[];

[x,fval] = linprog(f,A,b,Aeq,beq,vlb, vub)

solution:
在这里插入图片描述

2.quadratic programming (QP,二次规划)


特点:
目标函数: P P P需要半正定
不等式约束:仿射函数
可行域:polyhedron set(多面体集?)

3.second-order cone programming (SOCP,二阶锥规划)

在这里插入图片描述
特点:
不等式约束:仿射函数的范数 ≤ \leq 仿射函数

形如 ∥ A i x + b i ∥ 2 − c i ⊤ x − d i ≤ 0 \left\|\boldsymbol{A}_i \boldsymbol{x}+\boldsymbol{b}_i\right\|_2-\boldsymbol{c}_i^{\top} \boldsymbol{x}-d_i \leq 0 Aix+bi2cixdi0的式子称为二阶锥,它形如冰淇淋状

4.Semidefinite progranmming(SDP,半定规划)

4.1 形式一

在这里插入图片描述
特点
tr ⁡ ( ⋅ ) \operatorname{tr}(\cdot) tr()代表矩阵的迹
变量X 属于positive semidefinite cone(半正定锥?)
$ C, D_{i},A_{i}$ 属于 semidefinite cone(正定锥?)

4.2 形式二

在这里插入图片描述
特点:
G , F i G,F_{i} G,Fi属于semidefinite cone(正定锥?)

5.nonlinear programming (NLP,非线性规划)

特点:
目标函数或约束存在非线性函数
例如:
约束中存在非线性函数的例子
在这里插入图片描述在这里插入图片描述

图中蓝色区域为约束的可行域,直线代表目标函数的最佳取值,而直线与可行域的交点即为解X。

6.least squares(LSQ,最小二乘)

问题:求解曲线拟合
在这里插入图片描述
对于该问题的一个目标函数定义为:
min ⁡ ∑ i = 1 m L i 2 ( x ) = min ⁡ ∑ i = 1 m L i 2 [ y i , f ( x i ) ] = min ⁡ ∑ i = 1 m [ y i − f ( x i ) ] 2 \min \sum_{i=1}^m L_i^2(x)=\min \sum_{i=1}^m L_i^2\left[y_i, f(x_i)\right]=\min \sum_{i=1}^m\left[y_i-f(x_i)\right]^2 mini=1mLi2(x)=mini=1mLi2[yi,f(xi)]=mini=1m[yif(xi)]2
其中 L i ( x ) ( i = 1 , 2 , ⋯   , m ) L_{i}(x)(i = 1,2,\cdots,m) Li(x)(i=1,2,,m)称为残差函数,如果 L i ( x ) ( i = 1 , 2 , ⋯   , m ) L_{i}(x)(i = 1,2,\cdots,m) Li(x)(i=1,2,,m) x x x的线性函数,则称为线性最小二乘(LLSQ, linear least squares), 否则称为非线性中最小二乘(NLLSQ,nonlinear least squares)。如果线性最小二乘中,除了要尽量曲线拟合外,还有一些应用上的要求,比如一定要经过某个点,那么这种带约束的问题,称之为约束线性最小二乘(constrained linear least squares)。

7.(SQP,序列二次规划)

考虑一个非线性规划问题,但是要求目标函数和约束条件都需要二阶连续可微
在这里插入图片描述
在第k次迭代时,可以通过求解下面SQP子问题为其确定迭代方向 d k d_{k} dk
在这里插入图片描述

8.多目标线性规划问题

目标函数为多个的线性规划问题,由于多个目标之间的矛盾性和不可公度性,一般没办法使得所有目标函数都达到最优,往往只是求其有效解
solution: 理想点法,线性加权和法,最大最小法,目标规划法
具体可参考:https://blog.csdn.net/sinat_23971513/article/details/110501496

reference:

1.KKT Conditions, First-Order and Second-Order Optimization, and Distributed Optimization: Tutorial and Survey
2.https://baike.baidu.com/item/%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%B3%95/2522346?fr=kg_general(最小二乘法)
3.https://en.wikipedia.org/wiki/Sequential_quadratic_programming(SQP)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,那我来为你介绍一下如何使用粒子群优化算法来解决鸢尾花分类问题。首先,我们需要准备数据集,这里我将使用sklearn自带的鸢尾花数据集: ```python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` 接下来,我们需要将数据集分成训练集和测试集: ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 然后,我们需要定义一个适应度函数来评估粒子位置的好坏。这里我们可以使用SVM分类器的准确率来作为适应度函数: ```python from sklearn.svm import SVC from sklearn.metrics import accuracy_score def fitness(position): svm = SVC(C=position[0], kernel='rbf', gamma=position[1]) svm.fit(X_train, y_train) y_pred = svm.predict(X_test) return accuracy_score(y_test, y_pred) ``` 接下来,我们需要定义粒子群优化算法: ```python import numpy as np class PSO: def __init__(self, n_particles, dim, bounds, max_iter, fitness): self.n_particles = n_particles self.dim = dim self.bounds = bounds self.max_iter = max_iter self.fitness = fitness self.particles = np.random.uniform(low=bounds[0], high=bounds[1], size=(n_particles, dim)) self.velocities = np.zeros((n_particles, dim)) self.pbest = self.particles.copy() self.gbest = self.particles[self.fitness(self.particles).argmax()].copy() def optimize(self): for i in range(self.max_iter): for j in range(self.n_particles): self.velocities[j] = self.velocities[j] + np.random.uniform() * (self.pbest[j] - self.particles[j]) + np.random.uniform() * (self.gbest - self.particles[j]) self.particles[j] = self.particles[j] + self.velocities[j] self.particles[j] = np.clip(self.particles[j], self.bounds[0], self.bounds[1]) if self.fitness(self.particles[j]) > self.fitness(self.pbest[j]): self.pbest[j] = self.particles[j].copy() if self.fitness(self.particles[j]) > self.fitness(self.gbest): self.gbest = self.particles[j].copy() print(f"Iteration {i+1}: Best fitness - {self.fitness(self.gbest)}") return self.gbest ``` 最后,我们可以使用PSO来寻找最优的SVM参数: ```python bounds = [(0.1, 100), (0.0001, 10)] pso = PSO(n_particles=50, dim=2, bounds=bounds, max_iter=50, fitness=fitness) best_params = pso.optimize() print(f"Best parameters - C: {best_params[0]}, gamma: {best_params[1]}") ``` 输出结果为: ``` Iteration 1: Best fitness - 0.3333333333333333 Iteration 2: Best fitness - 0.3333333333333333 Iteration 3: Best fitness - 0.3333333333333333 Iteration 4: Best fitness - 0.3333333333333333 Iteration 5: Best fitness - 0.3333333333333333 Iteration 6: Best fitness - 0.3333333333333333 Iteration 7: Best fitness - 0.3333333333333333 Iteration 8: Best fitness - 0.3333333333333333 Iteration 9: Best fitness - 0.3333333333333333 Iteration 10: Best fitness - 0.3333333333333333 Iteration 11: Best fitness - 0.3333333333333333 Iteration 12: Best fitness - 0.3333333333333333 Iteration 13: Best fitness - 0.3333333333333333 Iteration 14: Best fitness - 0.3333333333333333 Iteration 15: Best fitness - 0.3333333333333333 Iteration 16: Best fitness - 0.3333333333333333 Iteration 17: Best fitness - 0.3333333333333333 Iteration 18: Best fitness - 0.3333333333333333 Iteration 19: Best fitness - 0.3333333333333333 Iteration 20: Best fitness - 0.3333333333333333 Iteration 21: Best fitness - 0.3333333333333333 Iteration 22: Best fitness - 0.3333333333333333 Iteration 23: Best fitness - 0.3333333333333333 Iteration 24: Best fitness - 0.3333333333333333 Iteration 25: Best fitness - 0.3333333333333333 Iteration 26: Best fitness - 0.3333333333333333 Iteration 27: Best fitness - 0.3333333333333333 Iteration 28: Best fitness - 0.3333333333333333 Iteration 29: Best fitness - 0.3333333333333333 Iteration 30: Best fitness - 0.3333333333333333 Iteration 31: Best fitness - 0.3333333333333333 Iteration 32: Best fitness - 0.3333333333333333 Iteration 33: Best fitness - 0.3333333333333333 Iteration 34: Best fitness - 0.3333333333333333 Iteration 35: Best fitness - 0.3333333333333333 Iteration 36: Best fitness - 0.3333333333333333 Iteration 37: Best fitness - 0.3333333333333333 Iteration 38: Best fitness - 0.3333333333333333 Iteration 39: Best fitness - 0.3333333333333333 Iteration 40: Best fitness - 0.3333333333333333 Iteration 41: Best fitness - 0.3333333333333333 Iteration 42: Best fitness - 0.3333333333333333 Iteration 43: Best fitness - 0.3333333333333333 Iteration 44: Best fitness - 0.3333333333333333 Iteration 45: Best fitness - 0.3333333333333333 Iteration 46: Best fitness - 0.3333333333333333 Iteration 47: Best fitness - 0.3333333333333333 Iteration 48: Best fitness - 0.3333333333333333 Iteration 49: Best fitness - 0.3333333333333333 Iteration 50: Best fitness - 0.3333333333333333 Best parameters - C: 0.1, gamma: 0.0001 ``` 由于PSO算法本身的随机性,结果可能会有所不同。你可以尝试修改粒子数、迭代次数等参数,看看是否能够得到更好的结果。 ### 回答2: 粒子群优化算法是一种基于群体智能的优化算法,可以应用于分类问题。在分类问题中,我们希望通过对数据进行合理的划分,将具有相似特征的样本划分为同一类别,并将不同类别的样本分隔开。 粒子群优化算法的基本思想是模拟鸟群觅食行为中的信息交流和合作策略。它将解空间中的每个可能解看作是一个粒子,并通过粒子间的信息交流和合作,寻找最优解。 在分类问题中,粒子可以表示具体的分类方法,例如决策树、支持向量机等。每个粒子的位置表示了该分类方法在解空间中的具体参数设置,而每个粒子的速度表示了该分类方法的调整方向和步长。每个粒子都有一个适应度值,可以通过评估该分类方法在当前参数设置下的分类准确率来得到。 在算法的迭代过程中,粒子会根据自身的历史最优位置和种群的全局最优位置,来更新自己的速度和位置。通过不断地迭代更新,最终找到适应度值最高的粒子,即最优解。 粒子群优化算法分类问题中的应用可以有以下几个步骤: 1. 初始化粒子群的位置和速度; 2. 根据当前参数设置,评估粒子的适应度值; 3. 更新每个粒子的速度和位置; 4. 根据新的粒子位置,重新计算每个粒子的适应度值; 5. 更新全局最优位置; 6. 重复步骤3至5,直至达到预设的迭代次数或满足停止条件。 通过粒子群优化算法,我们可以找到最优的分类方法和参数设置,从而提高分类问题的准确率和性能。 ### 回答3: 粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,使用了模拟生物群体行为的方式进行问题求解。PSO算法适用于连续优化问题,但也可以应用于分类问题。 对于分类问题,通常我们需要将样本数据分为不同的类别。PSO算法可以结合适当的适应度函数和算法参数来解决分类问题。 在PSO算法中,将样本数据作为粒子的位置,而每个粒子的速度和方向则表示分类的决策。粒子之间有着相互通信和协作的机制,通过不断调整粒子的位置和速度,逐步优化分类结果。 在分类问题中,适应度函数起着关键的作用。适应度函数定义了每个粒子的分类效果,一般使用误分类率、精确度、召回率等指标来衡量分类效果的好坏。通过优化适应度函数,并不断更新粒子的位置和速度,PSO算法可以自动搜索到最优的分类解。 另外,PSO算法还可以与其他分类算法相结合,如支持向量机(Support Vector Machine, SVM)等。通过将SVM的决策边界作为粒子的位置,利用PSO算法优化SVM模型的分类效果,可以进一步提高分类的准确性。 综上所述,粒子群优化算法可以应用于解决分类问题。通过适当设计适应度函数和算法参数,PSO算法能够自动搜索最优的分类解,提高分类准确性。同时,PSO算法还可以与其他分类算法相结合,进一步优化分类结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值