numpy 统计分析函数

import numpy as np
#统计分析函数
# n=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(n)
# print(n.sum(axis=0))               #axis=1按行      axis=0按列       不指定则算总和
# print(n.mean(axis=0))              #1 行    0  列          平均值
# print(n.max(axis=1))                #max(),min()
# price=np.array([34.5,36,37.8,39,39.8,33.6])
# number=np.array([900,580,230,150,120,1800])
# print(np.average(price,weights=number))                #average()加权平均数
# n=np.array([34.5,36,37.8,39,39.8,33.6])
# print(np.msort(n))                                  #sort()排序
# n1=sorted(n)
# print(np.median(n1))                           #median()中位数
# print(np.var(n))                              #var()数组方差     std()数组标准差
# n=np.array([[4,7,3],[2,8,5],[9,1,6]])
# print(n)
# print(np.sort(n,axis=0))                      #1 行   0 列
# x=np.array([4,7,3,2,8,5,1,9,6])
# y=np.argsort(x)                              #argsort()返回升序排序后的索引值
# print(y)
# print(x[y])                                #排序后的顺序重构原数组            
math=np.array([101,109,115,108,118,118])
eng=np.array([117,105,118,108,98,109])
total=np.array([621,623,620,620,615,615])
sort_total=np.lexsort((eng,math,total))           #lexsort()多个序列排序
print(sort_total)                                     # 排序后的索引值
print(np.array([[eng[i],math[i],total[i]] for i in sort_total]))          #通过排序后的索引获取排序后的数组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值