推荐系统实践

1、了解推荐系统相关知识

2、推荐引擎知识



3、51CTO公开课:Hive Pig Mahout数据挖掘
http://edu.51cto.com/course/course_id-1192.html?edu_recommend_adid=91。你看下这个视频,你们几个花几天时间一起搭建一下这个环境 

5、科研-》改进算法(GPU/MIC/MR的并行化)

6、应用-》搭建推荐系统和旅游移动应用环境


参考:
数据挖掘工具 Weka
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from math import sqrt critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0}, 'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5}, 'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0}, 'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5}, 'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0}, 'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5}, 'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}} df_critics=pd.DataFrame(critics) ##欧氏距离 def sim_distance(prefs,person1,person2): si={} for item in prefs[person1]: if item in prefs[person2]: si[item]=1 if len(si)==0: return 0 sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2) for item in prefs[person1] if item in prefs[person2]]) return 1/(1+sqrt(sum_of_squares)) ##numpy pandas 方法 def sim_distance2(prefs,person1,person2): return 1/(1+np.linalg.norm(prefs[person1]-prefs[person2])) ##皮尔逊相关系数 def sim_pearson(prefs,p1,p2): si={} for item in prefs[p1]: if item in prefs[p2]: si[item]=1 n=len(si) if n==0: return 1 ##对所有偏好求和 sum1=sum([prefs[p1][it] for it in si]) sum2=sum([prefs[p2][it] for it in si]) ##求平方和 sum1Sq=sum([pow(prefs[p1][it]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值