接雨水(单调栈 STL)

本文介绍如何使用动态规划算法解决一个实际问题:给定一组非负整数表示柱子高度,计算在降雨后能接收到的雨水量。通过栈操作和比较,找到最高水位并计算积水面积。实例演示了输入12个数010210132121的解题过程。
摘要由CSDN通过智能技术生成

【问题描述】
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。例如,当给定数字序列为 0,1,0,2,1,0,1,3,2,1,2,1 时,柱子高度图如下所示,最多可以接 6 个单位的雨水。
 

【输入格式】
第一行包含整数 n。
第二行包含 n 个非负整数。

【输出格式】
输出一个整数,表示最大接水量。

【数据范围】
1≤n≤100000,
序列中元素均不大于 1000。

【输入样例】
12
0 1 0 2 1 0 1 3 2 1 2 1

【输出样例】
6

【算法代码】

#include <bits/stdc++.h>
using namespace std;

int trap(vector<int>& h) {
	int ans=0;
	int n=h.size();

	stack<int> st;

	for(int i=0; i<n; i++) {
		if(st.empty() || h[st.top()]>h[i]) st.push(i);
		else {
			while(!st.empty() && h[st.top()]<=h[i]) {
				int idx=st.top();
				st.pop();
				if(!st.empty())
					ans+=(min(h[i],h[st.top()])-h[idx])*(i-st.top()-1);
			}
			st.push(i);
		}
	}
	return ans;
}

int main() {
	vector<int> v;
	int x;
	int n;
	cin>>n;
	for(int i=0; i<n; i++) {
		cin>>x;
		v.push_back(x);
	}

	cout<<trap(v)<<endl;

	return 0;
}

/*
in:
12
0 1 0 2 1 0 1 3 2 1 2 1
out:
6
*/

【参考文献】
https://blog.csdn.net/whutshiliu/article/details/106730218

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值