HDU 1532:排水系统 ← EK算法 网络流

82 篇文章 3 订阅
3 篇文章 0 订阅

【题目来源】
https://www.luogu.com.cn/problem/P2740
http://acm.hdu.edu.cn/showproblem.php?pid=1532

【问题描述】
在农夫约翰的农场上,每逢下雨,贝茜最喜欢的三叶草地就积聚了一潭水。这意味着草地被水淹没了,并且小草要继续生长还要花相当长一段时间。因此,农夫约翰修建了一套排水系统来使贝茜的草地免除被大水淹没的烦恼(不用担心,雨水会流向附近的一条小溪)。作为一名一流的技师,农夫约翰已经在每条排水沟的一端安上了控制器,这样他可以控制流入排水沟的水流量。
农夫约翰知道每一条排水沟每分钟可以流过的水量,和排水系统的准确布局(起点为水潭而终点为小溪的一张网)。需要注意的是,有些时候从一处到另一处不只有一条排水沟。根据这些信息,计算从水潭排水到小溪的最大流量。对于给出的每条排水沟,雨水只能沿着一个方向流动,注意可能会出现雨水环形流动的情形。


【输入格式】
第一行:两个用空格分开的整数 N(0≤N≤200)和 M(2≤M≤200)。N 是农夫 John 已经挖好的排水沟的数量,M 是排水沟交叉点的数量。交点 1 是水潭,交点 M 是小溪。
第二行到第 N+1 行:每行有三个整数,Si,Ei,Ci。Si 和 Ei (1≤Si,Ei ≤M)指明排水沟两端的交点,雨水从Si 流向 Ei。Ci (0≤Ci≤10^7)是这条排水沟的最大容量。


【输出格式】
输出一个整数,即排水的最大流量。

【算法分析】
● 网络流基本概念
网络:网络是一个有向有权图,包含一个源点和一个汇点,没有反平行边。
网络流:是定义在网络边集上的一个非负函数,表示边上的流量。
网络最大流:在满足容量约束和流量守恒的前提下,在流网络中找到一个净输出最大的网络流。
可行流:容量约束、流量守恒。

● 网络流常用示意图
在残余网络中找可增广路;
在实流网络中沿可增广路增流,在残余网络中沿可增广路减流。

增广路定理:设 flow 是网络 G 的一个可行流,如果不存在从源点 s 到汇点 t 关于 flow 的可增广路p,则 flow 是 G 的一个最大流。

● 利用“^1”运算表示反向边
由于网络流是有向有权图,因此可以选择链式前向星存图。对一个数连续执行两次“^1”运算后,便会得到自身。这恰好与网络流中“
反向边的反向边等于自身”不谋而合。因此,在网络流的算法实现中,我们可以利用“^1”运算来表示反向边。

● 链式前向星:
https://blog.csdn.net/hnjzsyjyj/article/details/139369904
val[idx]:存储编号为 idx 的边的值
e[idx]:存储编号为 idx 的结点的值
ne[idx]:存储编号为 idx 的结点指向的结点的编号
h[a]:存储头结点 a 指向的结点的编号


【算法代码】

/* 链式前向星存图
val[idx]:存储编号为 idx 的边的值
e[idx]:存储编号为 idx 的结点的值
ne[idx]:存储编号为 idx 的结点指向的结点的编号
h[a]:存储头结点 a 指向的结点的编号
*/

#include <bits/stdc++.h>
using namespace std;

const int maxn=1010;
const int maxm=20010;
const int inf=0x3f3f3f3f;

int n,m,s,t;
int e[maxm],ne[maxm],h[maxn],val[maxm],idx;
int q[maxn],d[maxn],pre[maxm];
bool st[maxn]; //stamp

void add(int u, int v, int w) { //Construct residual network
    val[idx]=w,e[idx]=v,ne[idx]=h[u],h[u]=idx++;
    val[idx]=0,e[idx]=u,ne[idx]=h[v],h[v]=idx++;
}

bool bfs() { //Finding the Augmenting Path
    memset(st,0,sizeof st);
    int head=0;
    int tail=0;
    q[0]=s, st[s]=true, d[s]=inf;

    while(head<=tail) {
        int u=q[head++];
        for(int i=h[u]; i!=-1; i=ne[i]) {
            int j=e[i];
            if(!st[j] && val[i]) {
                st[j]=true;
                pre[j]=i;
                d[j]=min(d[u],val[i]);
                if(j==t)return true;
                q[++tail]=j;
            }
        }
    }
    return false;
}

int EK() {
    int ans=0;
    while(bfs()) {
        ans+=d[t];
        for(int i=t; i!=s; i=e[pre[i]^1]) {
            val[pre[i]]-=d[t];
            val[pre[i]^1]+=d[t];
        }
    }
    return ans;
}

int main() {
    while(scanf("%d%d",&m,&n)!=EOF) {
        s=1,t=n;
        memset(h,-1,sizeof h);
        while(m--) {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);
        }
        printf("%d\n",EK());
    }

    return 0;
}


/*
in:
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

out:
50
*/



【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/139595477
https://blog.csdn.net/hnjzsyjyj/article/details/139369904
https://blog.csdn.net/hnjzsyjyj/article/details/127179286
http://t.zoukankan.com/zhengguiping--9876-p-4735869.html

 




 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值