由中序及后序遍历序列构建二叉树的函数参数解析

【二叉树构建函数的参数确立示意图】
ile:中序遍历左端点位置,iri:中序遍历右端点位置
ple:后序遍历左端点位置,pri:后序遍历右端点位置


 【函数代码】

int build(int ile,int iri,int ple,int pri){
    int root=postorder[pri];
    int k=pos[root];
    if(ile<k) le[root]=build(ile,k-1,ple,ple+k-1-ile);
    if(iri>k) ri[root]=build(k+1,iri,ple+k-1-ile+1,pri-1);
    return root;
}


【应用实例】
https://blog.csdn.net/hnjzsyjyj/article/details/131624022



 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我会尽力回答您的问题。 首先,按先序遍历序列建立二叉树的二叉链表,可以通过递归的方式实现。具体的建树过程如下: 1. 如果当前字符为 F,则返回 NULL,表示该节点为空节点。 2. 创建一个新节点,将当前字符赋值给该节点的值。 3. 递归创建左子树。 4. 递归创建右子树。 5. 返回该节点。 按照上述建树过程,可以得到如下的二叉树: ``` A / \ B C / \ D E / \ F F / \ F F ``` 接下来,我们可以依次输出二叉树的先序、中序后序遍历序列。以先序遍历为例,具体的实现过程如下: 1. 输出当前节点的值。 2. 递归输出左子树的先序遍历序列。 3. 递归输出右子树的先序遍历序列。 按照上述实现过程,可以得到二叉树的先序遍历序列为:ABCFDEGFFF. 中序遍历后序遍历的实现过程类似,这里不再赘述。 最后,我们需要编写函数统计二叉树的节点个数、树的深度、叶子节点的个数。具体的实现过程如下: 1. 统计节点个数:节点个数等于左子树节点个数加上右子树节点个数加一(当前节点)。 2. 计算树的深度:树的深度等于左子树深度和右子树深度的较大值加一(当前节点)。 3. 统计叶子节点个数:如果当前节点为空节点,则返回零;否则,如果当前节点没有左子树和右子树,则返回一;否则,递归统计左子树和右子树的叶子节点个数并相加。 按照上述实现过程,可以得到如下的代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值