【题目来源】
https://www.acwing.com/problem/content/1635/
【题目描述】
外观数列是指具有以下特点的整数序列:
D, D1, D111, D113, D11231, D112213111, ...
其中 D 是一个 [0,9] 范围内的不等于 1 的整数。
序列的第 n+1 项是对第 n 项的描述。比如:
第 2 项 D1,表示第 1 项 D 有 1 个 D。所以第 2 项就是 D1;
第 3 项 D111,表示第 2 项 D1 有 1 个 D(对应 D1)和 1 个 1(对应 11)。所以第 3 项就是 D111。
第 4 项是 D113,表示第 3 项 D111 有 1 个 D(对应 D1)和 3 个 1(对应 13)。所以第 4 项就是 D113。
第 5 项是 D11231,表示第 4 项 D113 有 1 个 D(对应 D1)、2 个 1(对应 12)和 1 个 3(对应 31)。所以第 5 项就是 D11231。
其他各项,以此类推。当然,这个定义对 D=1 也成立。
本题要求你推算任意给定数字 D 的外观数列的第 N 项。
【输入格式】
共一行包含两个整数 D 和 N。
【输出格式】
在一行中给出数字 D 的外观数列的第 N 项。
【数据范围】
0≤D≤9,
1≤N≤40
【输入样例】
1 8
【输出样例】
1123123111
【算法分析】
● 整数 d → 字符 ‘d‘ 的转换代码为:d+‘0‘。例如:2+'0' 的结果为 ‘2’。代码参考如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn=12;
char t[maxn],s[maxn];
int i,j;
int main() {
int x;
cin>>x;
while(x) {
t[i]=x%10+'0'; //int to char using +'0'
i++;
x=x/10;
}
cout<<t<<endl;
i-=1;
while(i>=0) {
s[j]=t[i]; //core code
j++;
i--;
}
cout<<s<<endl;
return 0;
}
/*
in:
678
out:
876
678
*/
详见:https://blog.csdn.net/hnjzsyjyj/article/details/140345590
● 语句 string s="", s+=d+'0'; 不能写成 string s+=d+'0'; 语句,否则系统会提示 s 没有初始化。当然,语句 string s="", s+=d+'0'; 等价于 string s=to_string(d);
【算法代码】
#include <bits/stdc++.h>
using namespace std;
int n;
string d;
void solve() {
string t="";
int len=d.length();
for(int i=0; i<len; i++) {
int cnt=0, j=i;
char ch=d[i];
while(d[j]==ch) {
cnt++;
j++;
}
t+=ch;
t+=(cnt+'0'); //int to char
i=j-1;
}
d=t;
}
int main() {
cin>>d>>n;
for(int i=1; i<=n-1; i++) {
solve();
}
cout<<d<<endl;
return 0;
}
/*
in:1 8
out:1123123111
*/
【参考文献】
https://blog.csdn.net/will130/article/details/49641289
https://www.acwing.com/solution/content/68229/
https://www.acwing.com/solution/content/19695/