【题目来源】
https://www.acwing.com/problem/content/12/
【题目描述】
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。物品的编号范围是 1…N。
【输入格式】
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
【输出格式】
输出一行,包含若干个用空格隔开的整数,表示最优解中所选物品的编号序列,且该编号序列的字典序最小。
物品编号范围是 1…N。
【数据范围】
0<N,V≤1000
0<vi,wi≤1000
【输入样例】
4 5
1 2
2 4
3 4
4 6
【输出样例】
1 4
【算法分析】
● 在 0-1背包问题 中,如果我们希望按字典序输出方案(即优先选择编号小的物品),通常需要逆序遍历物品(从 N 到 1)进行动态规划,然后再正序遍历(从 1 到 N)回溯方案。
这是因为,逆序(N→1)计算 dp[i][j] 时,dp[i][j] 依赖于 dp[i+1][j] 和 dp[i+1][j-w[i]]。
回溯时(1→N),如果 dp[i][j] == dp[i+1][j-w[i]] + v[i],说明 第 i 个物品可以选。优先选编号小的物品(因为 i 从小到大遍历),保证字典序最小。
【算法代码】
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e3+5;
int vol[maxn],val[maxn];
int f[maxn][maxn];
int path[maxn];
int cnt;
int n,v;
int main() {
cin>>n>>v;
for(int i=1; i<=n; i++) {
cin>>vol[i]>>val[i];
}
for(int i=n; i>=1; i--) {
for(int j=0; j<=v; j++) {
f[i][j]=f[i+1][j];
if(j>=vol[i]) f[i][j]=max(f[i][j],f[i+1][j-vol[i]]+val[i]);
}
}
for(int i=1,j=v; i<=n; i++) {
if(j>=vol[i] && f[i][j]==f[i+1][j-vol[i]]+val[i]) {
path[cnt++]=i;
j-=vol[i];
}
}
for(int i=0; i<cnt; i++) {
cout<<path[i]<<" ";
}
cout<<endl;
return 0;
}
/*
in:
4 5
1 2
2 4
3 4
4 6
out:
1 4
*/
【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/126067759
https://blog.csdn.net/hnjzsyjyj/article/details/147326357
https://www.acwing.com/problem/content/solution/12/1/
https://www.acwing.com/solution/content/54306/