【题目来源】
https://www.acwing.com/problem/content/2/
【题目描述】
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
【输入格式】
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
【输出格式】
输出一个整数,表示最大价值。
【输入样例】
4 5
1 2
2 4
3 4
4 5
【输出样例】
8
【数据范围】
0<N, V≤1000
0<vi, wi≤1000
【算法分析】
● 0-1背包问题(0-1 Knapsack Problem)
(1)0-1背包问题(0-1 Knapsack Problem) 是经典的动态规划问题,属于组合优化领域。它的核心是在有限容量的背包中,选择一组物品(每件物品只能选或不选),使得总价值最大,同时不超过背包容量。
(2)0-1背包问题的名称源于每件物品只有“选”或“不选”两种状态,即“1”或“0”,故称 0-1 背包。
(3)0-1背包问题中的每件物品既不能拆分,也不能重复选。
● 0-1背包问题的状态转移方程
(1)状态 f[i][j] 定义:表示从前 i 个物品中选择,背包容量为 j 时的最大价值。
(2)当前背包容量 j<vol[i] 时,没得选。此时,不选第 i 个物品,直接继承前 i-1 个物品在容量 j 时的最优解 f[i][j]=f[i-1][j]。
(3)当前背包容量 j>vol[i] 时,若不选第 i 个物品,则有 f[i][j]=f[i-1][j]。若选第 i 个物品,必须先腾出第 i 个物品所占空间 vol[i](剩余容量 j-vol[i]),再取前 i-1 个物品在剩余容量下的最优解(f[i-1][j-vol[i]]),最后加上当前物品的价值 val[i]。即,f[i-1][j-vol[i]]+val[i]。
综上,可得 0-1 背包问题的状态转移方程为:f[i][j]=max(f[i-1][j],f[i-1][j-vol[i]]+val[i])。
● 0-1背包问题的一维数组优化
(1)观察代码 f[i][j]=max(f[i-1][j],f[i-1][j-vol[i]]+val[i]),发现求 f[i][j] 时只用到了f[i-1][*],即上一行的数据。也就是说,比 i-1 更小行的数据再也不会被用到。故若把 f 看成一张二维表格,那么只有 i 及 i-1 这两行的格子是 “活跃” 的。基于这一思想,可以只保存这两行。
(2)继续刚才的思路,由 f[i][j]=max(f[i-1][j],f[i-1][j-vol[i]]+val[i]) 知,每个格子在转移时,只会用到上一行中在它左侧的格子。如果每一行转移顺序调整为从右往左进行更新(j 从大到小),那么“活跃”的格子就正好只有「上一行的左半部分以及当前行的右半部分」。那么实际上我们只需要保存这些 “活跃” 格子的状态就可以了,从而得到一维的状态转移方程:f[j]=max(f[j],f[j-vol[i]]+val[i])
【算法代码一:二维】
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e3+5;
int vol[maxn]; //volume
int val[maxn]; //value
int f[maxn][maxn];
int main() {
int n,v;
cin>>n>>v;
for(int i=1; i<=n; i++)
cin>>vol[i]>>val[i];
for(int i=1; i<=n; i++)
for(int j=1; j<=v; j++) {
if(j<vol[i]) f[i][j]=f[i-1][j];
else f[i][j]=max(f[i-1][j],f[i-1][j-vol[i]]+val[i]);
}
cout<<f[n][v]<<endl;
return 0;
}
/*
in:
5 4
1 20
4 30
1 15
3 20
1 10
out:
45
*/
【算法代码二:一维】
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e3+5;
int vol[maxn],val[maxn],f[maxn];
int n,v;
int main() {
cin>>n>>v;
for(int i=1; i<=n; i++) {
cin>>vol[i]>>val[i];
}
for(int i=1; i<=n; i++) {
for(int j=v; j>=vol[i]; j--) {
f[j]=max(f[j],f[j-vol[i]]+val[i]);
}
}
cout<<f[v];
return 0;
}
/*
in:
4 5
1 2
2 4
3 4
4 5
out:
8
*/
【参考文献】
https://zhuanlan.zhihu.com/p/638029493
https://www.acwing.com/solution/content/1374/
https://www.acwing.com/solution/content/116859/