AcWing 849:Dijkstra求最短路 I ← 有向图 + 链式前向星

【题目来源】
https://www.acwing.com/problem/content/851/

【题目描述】
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

【输入格式】
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

【输出格式】
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。

【数据范围】
1≤n≤
500,
1≤m≤
10^5,
图中涉及边长均不超过 10000。

【输入样例】
3 3
1 2 2
2 3 1
1 3 4

【输出样例】
3

【算法分析】
● Dijkstra 算法
Dijkstra 算法是一种用于解决有权图中单源最短路径问题的经典算法,由荷兰计算机科学家 Edsger W. Dijkstra 于 1956 年提出。以下是该算法的核心要点:
(1)适用范围‌:适用于带非负权重的有向图或无向图,无法处理含负权边的图。
(2)核心思想‌:采用贪心策略,逐步扩展离源点最近的未访问节点,更新邻接节点的最短距离。


链式前向星:https://blog.csdn.net/hnjzsyjyj/article/details/139369904
链式前向星”就是“多单链表”,每条单链表基于“头插法”并用 e[]、ne[]、h[] 、val[] 等数组进行模拟创建。其中:
e[idx]:存储序号为 idx 的边的终点值
ne[idx]:存储序号为 idx 的边指向的边的序号(模拟链表指针)‌
h[a]:存储头结点 a 指向的边的序号
val[idx]:存储序号为 idx 的边的权值(可选)

● 本题基于
链式前向星实现了有向图的 Dijkstra 算法。
本题的基于邻接矩阵的实现,详见:
https://blog.csdn.net/hnjzsyjyj/article/details/147463593

● 代码解析
在这段 Dijkstra 算法的代码中,
int t=-1 的作用是‌初始化一个临时变量 t,用于存储当前未访问节点中距离起点最近的节点编号‌。初始时,由于在 n 个节点的图中,除了起点之外,未访问节点只有 n-1 个,故循环只需进行 n-1 次。

【算法代码:
有向图+链式前向星

#include <bits/stdc++.h>
using namespace std;

const int inf=0x3f3f3f3f;
const int N=5e2+5;
const int M=1e5+5;
int h[N],e[M],ne[M],val[M],idx;
int st[N],dis[N];
int n,m;

void add(int a,int b,int w) {
    val[idx]=w,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

int dijkstra() {
    memset(dis,inf,sizeof dis);
    dis[1]=0;
    for(int i=1; i<n; i++) {
        int t=-1;
        for(int j=1; j<=n; j++) {
            if(!st[j] && (t==-1 || dis[t]>dis[j])) t=j;
        }
        st[t]=true;
        for(int i=h[t]; i!=-1; i=ne[i]) {
            int j=e[i];
            dis[j]=min(dis[j],dis[t]+val[i]);
        }
    }

    if(dis[n]==inf) return -1;
    return dis[n];
}

int main() {
    memset(h,-1,sizeof(h));
    cin>>n>>m;
    while(m--) {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    cout<<dijkstra()<<endl;

    return 0;
}

/*
in:
3 3
1 2 2
2 3 1
1 3 4

out:
3
*/


【算法代码:有向图+邻接矩阵

#include <bits/stdc++.h>
using namespace std;

const int inf=0x3f3f3f3f;
const int N=505;
int dis[N],g[N][N];
bool st[N];
int n,m;

int dijkstra() {
    memset(dis,inf,sizeof dis);
    dis[1]=0;
    for(int i=1; i<n; i++) {
        int t=-1;
        for(int j=1; j<=n; j++) {
            if(!st[j] && (t==-1 || dis[t]>dis[j])) t=j;
        }
        st[t]=true;
        for(int j=1; j<=n; j++) {
            dis[j]=min(dis[j],dis[t]+g[t][j]);
        }
    }

    if(dis[n]==inf) return -1;
    return dis[n];
}

int main() {
    cin>>n>>m;
    memset(g,inf,sizeof g);
    while(m--) {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=min(g[a][b],c);
    }
    cout<<dijkstra()<<endl;

    return 0;
}

/*
in:
3 3
1 2 2
2 3 1
1 3 4

out:
3
*/




【参考文献】
https://zhuanlan.zhihu.com/p/684656346
https://www.acwing.com/solution/content/38318/
https://blog.csdn.net/hnjzsyjyj/article/details/108951459


 

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值