思路:由于每一次只能乘以2或者除以2,所以在10^5次方以内每个数能够的到的数不会超过200个,不可能让大于10^5成为相等的量,因为如果是这样的话,那么肯定是由最大的数乘以2(2的倍数)得到,那么其他的数也只能通过乘以2的倍数得到,这样的话,更小的数一定会先得到最大的数而不必再乘以2的倍数得到更大的数。
每次bfs找输入的数能到达的数的步骤,记录所有数能到达的数,最终能到达的数的次数为n的话,那么该步数可以保留
#include<cstdio>
#include<cstring>
#include<map>
#include<vector>
#include<queue>
#include<algorithm>
typedef long long ll;
const int maxn = 1e5 + 10;
const int INF = 1e9;
using namespace std;
struct P {
int a, step;
P() {}
P(int aa, int bb) : a(aa), step(bb) {}
};
int vis[maxn], time[maxn], can[maxn];
int pc[200], num, n, a;
void init() {
memset(vis, 0, sizeof(vis));
memset(time, 0, sizeof(time));
memset(can, 0, sizeof(can));
}
void bfs(int r) {
can[r] = 1;
num = 0;
queue<P> q;
q.push(P(r, 0));
while(!q.empty()) {
P p = q.front(); q.pop();
time[p.a] += p.step;
vis[p.a]++;
pc[num++] = p.a;
int d1 = p.a / 2, d2 = p.a * 2;
if(d1 && !can[d1]) {
can[d1] = 1;
q.push(P(d1, p.step + 1));
}
if(d2 < maxn && !can[d2]) {
can[d2] = 1;
q.push(P(d2, p.step + 1));
}
}
for(int i = 0; i < num; i++) {
int u = pc[i];
can[u] = 0;
}
}
int main() {
while(scanf("%d", &n) != EOF) {
init();
for(int i = 0; i < n; i++) {
scanf("%d", &a);
bfs(a);
}
int mint = INF;
for(int i = 0; i < maxn; i++) {
if(vis[i] == n) mint = min(mint, time[i]);
}
printf("%d\n", mint);
}
return 0;
}