51Nod 1483 化学变换

思路:由于每一次只能乘以2或者除以2,所以在10^5次方以内每个数能够的到的数不会超过200个,不可能让大于10^5成为相等的量,因为如果是这样的话,那么肯定是由最大的数乘以2(2的倍数)得到,那么其他的数也只能通过乘以2的倍数得到,这样的话,更小的数一定会先得到最大的数而不必再乘以2的倍数得到更大的数。

每次bfs找输入的数能到达的数的步骤,记录所有数能到达的数,最终能到达的数的次数为n的话,那么该步数可以保留

#include<cstdio>
#include<cstring>
#include<map>
#include<vector>
#include<queue>
#include<algorithm>
typedef long long ll;
const int maxn = 1e5 + 10;
const int INF = 1e9;
using namespace std;

struct P {
    int a, step;
    P() {}
    P(int aa, int bb) : a(aa), step(bb) {}
};
int vis[maxn], time[maxn], can[maxn];
int pc[200], num, n, a;

void init() {
    memset(vis, 0, sizeof(vis));
    memset(time, 0, sizeof(time));
    memset(can, 0, sizeof(can));
}

void bfs(int r) {
    can[r] = 1;
    num = 0;
    queue<P> q;
    q.push(P(r, 0));
    while(!q.empty()) {
        P p = q.front(); q.pop();
        time[p.a] += p.step;
        vis[p.a]++;
        pc[num++] = p.a;
        int d1 = p.a / 2, d2 = p.a * 2;
        if(d1 && !can[d1]) {
            can[d1] = 1;
            q.push(P(d1, p.step + 1));
        }
        if(d2 < maxn && !can[d2]) {
            can[d2] = 1;
            q.push(P(d2, p.step + 1));
        }
    }
    for(int i = 0; i < num; i++) {
        int u = pc[i];
        can[u] = 0;
    }
}

int main() {
    while(scanf("%d", &n) != EOF) {
        init();
        for(int i = 0; i < n; i++) {
            scanf("%d", &a);
            bfs(a);
        }
        int mint = INF;
        for(int i = 0; i < maxn; i++) {
            if(vis[i] == n) mint = min(mint, time[i]);
        }
        printf("%d\n", mint);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值