HDU5382 GCD?LCM!(数学公式推导)

题意:

             定义 F(n)=i=1nj=1n[gcd(i,j)+lcm(i,j)n] F ( n ) = ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) + l c m ( i , j ) ⩾ n ] ,其中 [] [ ] 是艾弗森约定,现在要求出 ansn=i=1nF(i) a n s n = ∑ i = 1 n F ( i ) .

思路:

             如果定义 T(n)=i=1nj=1n[gcd(i,j)+lcm(i,j)=n] T ( n ) = ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) + l c m ( i , j ) = n ] ,那么 Fn=iii=1n1T(i) F n = i ∗ i − ∑ i = 1 n − 1 T ( i ) ,因为不可能存在 in i ⩾ n 或者 jn j ⩾ n 时有 gcd(i,j)+lcm(i,j)=n g c d ( i , j ) + l c m ( i , j ) = n ,看 T(n) T ( n ) 怎么算:
T(n)=d=1ni=1ndj=1nd[gcd(i,j)=1][ijd+d=n] T ( n ) = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ [ g c d ( i , j ) = 1 ] [ i ∗ j ∗ d + d = n ]
                            =d=1ni=1ndj=1nd[gcd(i,j)=1][(ij+1)d=n] = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ [ g c d ( i , j ) = 1 ] [ ( i ∗ j + 1 ) d = n ]
                            =d|ni=1ndj=1nd[gcd(i,j)=1][(ij+1)d=n] = ∑ d | n ∑ i = 1 n d ∑ j = 1 n d [ g c d ( i , j ) = 1 ] [ ( i ∗ j + 1 ) d = n ]
                            =d|ni=1ndj=1nd[gcd(i,j)=1][ij=nd1] = ∑ d | n ∑ i = 1 n d ∑ j = 1 n d [ g c d ( i , j ) = 1 ] [ i ∗ j = n d − 1 ]
                            =d|ni=1ndj=1nd[gcd(i,j)=1][j=nd1i] = ∑ d | n ∑ i = 1 n d ∑ j = 1 n d [ g c d ( i , j ) = 1 ] [ j = n d − 1 i ]
                            =d|ni=1nd[gcd(i,nd1i)=1] = ∑ d | n ∑ i = 1 n d [ g c d ( i , n d − 1 i ) = 1 ]
                            =d|ni=1nd1[gcd(i,nd1i)=1] = ∑ d | n ∑ i = 1 n d − 1 [ g c d ( i , n d − 1 i ) = 1 ]
f(x)=i|x[gcd(i,xi)=1] f ( x ) = ∑ i | x [ g c d ( i , x i ) = 1 ] ,如果 i i x/i互素,那么可以知道 i i 要么完全拥有x的素因子,要么完全没有 x x 的素因子,暴力搜索一下素因子产生x的因子即可,不用 gcd g c d 去判断,因为那样时间就变成 O(nlg2n)..... O ( n lg 2 ⁡ n ) . . . . . ,会超时的。

#include<bits/stdc++.h>
typedef long long ll;
const int maxn = 1e6 + 5;
const ll mod = 258280327;
using namespace std;

typedef pair<int, int> pa;
int a[maxn];

pa pri[1000]; int num;
void div(int x) {
    while(x > 1) {
        int now = a[x];
        if(!num || pri[num - 1].first != now) pri[num++] = pa(now, 1);
        else pri[num - 1].second++;
        x /= now;
    }
}

int vec[1000], cnt, T;
void dfs(ll &ans, int sol, int sum, int id, int flag) {
    if(id == num) {
        int y = sol / sum;
        vec[cnt++] = sum;
        if(!flag) ans++;
        return ;
    }
    int k = 1, g = flag;
    for(int i = 0; i <= pri[id].second; i++) {
        if(!i || i == pri[id].second) flag = 0;
        else flag = 1;
        dfs(ans, sol, sum * k, id + 1, g | flag);
        k *= pri[id].first;
    }
}

ll ans[maxn], rec[maxn];
ll seq[maxn], f[maxn], tot[maxn];

void solve() {
    int max_p = 0;
    for(ll i = 1; i <= 1000000; i++) {
        num = 0; div(i); cnt = 0;
        dfs(f[i], i, 1, 0, 0);
        rec[i] = i * i;
        rec[i] = rec[i] - tot[i - 1];
        for(int j = 0; j < cnt; j++) {
            int x = vec[j];
            seq[i] += f[x - 1];
        }
        tot[i] = tot[i - 1] + seq[i];
        ans[i] = ans[i - 1] + rec[i];
    }
}


int main() {
    for(ll i = 2; i < maxn; i++) {
        if(a[i]) continue;
        a[i] = (int) i;
        for(ll j = i * i; j < maxn; j += i) if(!a[j]) a[j] = i;
    }
    solve(); int n;
    scanf("%d", &T);
    while(T--) {
        scanf("%d", &n);
        printf("%lld\n", ans[n] % mod);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值