【香蕉OI】GCD 和 LCM (莫比乌斯反演)

文章目录

题意

给出 T T T 组询问,每组询问求 ∑ i ≤ n ∑ j ≤ m [ g c d ( i , j ) ≤ a ] l c m ( i , j ) \sum_{i\le n}\sum_{j\le m}[gcd(i,j)\le a]lcm(i,j) injm[gcd(i,j)a]lcm(i,j)

T ≤ 1 0 4 , n , m , a ≤ 1 0 5 T\le 10^4,n,m,a\le 10^5 T104,n,m,a105

思路

比赛的送分题,看起来很套路,但是我套路都忘光了。

首先枚举 g c d ( i , j ) gcd(i,j) gcd(i,j)

a n s ( n , m , a ) = ∑ d ≤ a ∑ i ≤ ⌊ n d ⌋ ∑ j ≤ ⌊ m d ⌋ [ g c d ( i , j ) = 1 ] ⋅ i ⋅ j ⋅ d ans(n,m,a)=\sum_{d\le a}\sum_{i\le \lfloor\frac{n}{d}\rfloor}\sum_{j\le \lfloor\frac{m}{d}\rfloor}[gcd(i,j)=1]\cdot i\cdot j\cdot d ans(n,m,a)=daidnjdm[gcd(i,j)=1]ijd

套路转化 [ g c d ( i , j ) = 1 ] = ∑ p ∣ i , p ∣ j μ ( p ) [gcd(i,j)=1]=\sum_{p|i,p|j} \mu(p) [gcd(i,j)=1]=pi,pjμ(p)

a n s ( n , m , a ) = ∑ d ≤ a ∑ i ≤ ⌊ n d ⌋ ∑ j ≤ ⌊ m d ⌋ ∑ p ∣ i , p ∣ j μ ( p ) ⋅ i ⋅ j ⋅ d ans(n,m,a)=\sum_{d\le a}\sum_{i\le \lfloor\frac{n}{d}\rfloor}\sum_{j\le \lfloor\frac{m}{d}\rfloor}\sum_{p|i,p|j} \mu(p)\cdot i\cdot j\cdot d ans(n,m,a)=daidnjdmpi,pjμ(p)ijd

换个顺序

a n s ( n , m , a ) = ∑ d ≤ a d ∑ p ≤ ⌊ n d ⌋ μ ( p ) ⋅ p 2 ∑ i ≤ ⌊ n d p ⌋ i ∑ j ≤ ⌊ m d p ⌋ j ans(n,m,a)=\sum_{d\le a}d\sum_{p\le \lfloor\frac{n}{d}\rfloor} \mu(p)\cdot p^2\sum_{i\le \lfloor\frac{n}{dp}\rfloor}i\sum_{j\le \lfloor\frac{m}{dp}\rfloor}j ans(n,m,a)=dadpdnμ(p)p2idpnijdpmj

套路转化,令 k = d ⋅ p k=d\cdot p k=dp,枚举 k k k

a n s ( n , m , a ) = ∑ k ≤ n ∑ i ≤ ⌊ n k ⌋ i ∑ j ≤ ⌊ m k ⌋ j ∑ d ≤ a , d ∣ k d ⋅ μ ( k d ) ⋅ ( k d ) 2 = ∑ k ≤ n k 2 ∑ i ≤ ⌊ n k ⌋ i ∑ j ≤ ⌊ m k ⌋ j ∑ d ≤ a , d ∣ k μ ( k d ) d \begin{aligned} ans(n,m,a)&=\sum_{k\le n}\sum_{i\le \lfloor\frac{n}{k}\rfloor}i\sum_{j\le \lfloor\frac{m}{k}\rfloor}j\sum_{d\le a,d|k} d\cdot \mu(\frac{k}{d})\cdot (\frac{k}{d})^2 \\&=\sum_{k\le n}k^2\sum_{i\le \lfloor\frac{n}{k}\rfloor}i\sum_{j\le \lfloor\frac{m}{k}\rfloor}j\sum_{d\le a,d|k} \frac{\mu(\frac{k}{d})}{d} \end{aligned} ans(n,m,a)=kniknijkmjda,dkdμ(dk)(dk)2=knk2iknijkmjda,dkdμ(dk)

假如忽略 d ≤ a d\le a da 的限制,后面那个部分是一个积性函数,可以预处理。

但是加上了限制之后就不行了。那么我们考虑把询问离线,按照 a a a 排序,用树状数组维护后面的部分。每次将 d = a d=a d=a 暴力插入树状数组。修改复杂度 O ( a log ⁡ a log ⁡ n ) O(a\log a\log n) O(alogalogn)。查询的时候整除分块一下。

总复杂度 O ( a log ⁡ a log ⁡ n + T n log ⁡ n ) O(a\log a\log n+T \sqrt{n}\log n) O(alogalogn+Tn logn)

代码

#include<bits/stdc++.h>
using namespace std;
const int TN = 1e4 + 10, N = 1e5 + 10, mod = 1e9 + 7;
int T, ans[TN], t[N];
int mu[N], b[N], p[N], pn;
struct que{
	int n, m, a, id;
}q[TN];

void init(){
	mu[1] = 1;
	for (int i = 2; i < N; ++ i){
		if (!b[i])
			p[++pn] = i, mu[i] = mod-1;
		for (int j = 1; j <= pn; ++ j){
			if (1LL*i*p[j] >= N) break;
			b[i*p[j]] = 1;
			if (i%p[j] == 0){mu[i*p[j]] = 0; break;}
			else mu[i*p[j]] = mod-mu[i];
		}
	}
}

bool cmp(que x, que y){
	return x.a < y.a;
}

void add(int &x, int y){x += y; if (x >= mod) x -= mod;}

int lowbit(int x){return x&(-x);}

void upd(int x, int y){
	for (int i = x; i < N; i += lowbit(i))
		add(t[i], y);
}

int qry(int x){
	int ret = 0;
	for (int i = x; i; i -= lowbit(i))
		add(ret, t[i]);
	return ret;
}

int sum(int x){return 1LL*(x+1)*x/2%mod;}

int solve(int n, int m, int a){
	if (n > m) swap(n, m);
	int ret = 0;
	for (int i = 1, j; i <= n; i = j+1){
		j = min(n, min(n / (n / i), m / (m / i)));
		add(ret, 1LL * sum(n/i) * sum(m/i) % mod * (qry(j)-qry(i-1)+mod) % mod);
	}
	return ret;
}

int main()
{
	init();
	scanf("%d", &T);
	for (int i = 1; i <= T; ++ i)
		scanf("%d%d%d", &q[i].n, &q[i].m, &q[i].a), q[i].id = i;
	sort(q + 1, q + T + 1, cmp);
	for (int i = 1, k = 1; i <= T; ++ i){
		for (; k <= q[i].a; ++ k)
			for (int j = k; j < N; j += k)
				upd(j, 1LL * k * mu[j/k] % mod * (j/k) % mod * (j/k) % mod);
		ans[q[i].id] = solve(q[i].n, q[i].m, q[i].a);
	}
	for (int i = 1; i <= T; ++ i)
		printf("%d\n", ans[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值