反素数 模板 求因子的个数为n的最小的数是什么

反素数:

如果一个自然数比所有比它小的自然数的约数个数都要多,那么我们就称这个数为一个反素数。例如,1、2、4、6、12和24都是反素数。

 

性质一:一个反素数的质因子必然是从2开始连续的质数.
性质二:p=2^t1*3^t2*5^t3*7^t4.....必然t1>=t2>=t3>=....

不大于n的最大的反素数模板:  n可以是很大的数   超出int的也可以

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>

using namespace std;

typedef long long lld;

lld prime[20]={2,3,5,7,11,13,17,19,23,29,31,37,39,41,43,47,53};
lld n;
lld bestcurr,largecnt;//bestcurr 相同最大因数个数中值最小的数,largecnt:n范围内最大的因数个数
void getarcprime(lld curr,int cnt,int limit,int k)
{
    if(curr>n)
        return ;
    if(largecnt<cnt)//此时枚举到的因数个数比之前记录的最大的因数个数要大,就替换最大因数个数
    {
        largecnt=cnt;
        bestcurr=curr;
    }
    if(largecnt==cnt && bestcurr>curr)//替换最优值
        bestcurr=curr;
    lld temp=curr;
    for(int i=1;i<=limit;i++)
    {
        temp=temp*prime[k];
        if(temp>n)
            return;
        getarcprime(temp,cnt*(i+1),i,k+1);

    }
}
int main()
{
    int i,cas;
    scanf("%d",&cas);
    for(i=1;i<=cas;i++)
    {
        scanf("%lld",&n);
        bestcurr=0;
        largecnt=0;
        getarcprime(1,1,50,0);
        printf("Case #%d: %lld\n",i,bestcurr);
    }
    return 0;
}


 

 

下面的是打表法  可以求1-1000 甚至更多的反素数  (只要改下数组大小就好)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
typedef __int64 lld;
lld p[1010];//p[i] 表示为因子个数为i的最小整数是什么
lld prime[30]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
int  maxn;//最大的可能的值  
void getartprime(lld cur,int cnt,int limit,int k)
{
    //cur:当前枚举到的数;
    //cnt:该数的因数个数;
    //limit:因数个数的上限;2^t1*3^t2*5^t3……t1>=t2>=t3…… 一般取50就够了
    //第k大的素数
    //if(cur>((lld)1<<60) || cnt>150) return ;
	if(cur>maxn) return ;//如果当前的数大于我们要求的 最大的数 maxn 就寻找完毕了
    if(p[cnt]!=0 && p[cnt]>cur)//当前的因数个数已经记录过且当时记录的数比当前枚举到的数要大,则替换此因数个数下的枚举到的数
        p[cnt]=cur;
    if(p[cnt]==0)//此因数个数的数还没有出现过,则记录
        p[cnt]=cur;
    lld temp=cur;
    for(int i=1;i<=limit;i++)//枚举数
    {
        temp=temp*prime[k];
        if(temp>maxn) return;
        getartprime(temp,cnt*(i+1),i,k+1);

    }
}
int main()
{
        getartprime(1,1,50,0);
		return 0;
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值