水果消除 hnust bfs专题

题目描述

“水果消除”是一款手机游戏,相信大家都玩过或玩过类似的游戏。

下面是“水果消除”游戏的一种初始状态。

消除的基本规则:如果有2个或2个以上的相同水果连在一起,则可以点选并消除。

请问在某一种状态下,有几种可以点选并消除的选择方案。

例如,对于上图所示的初始状态,将有6种点选并消除的选择方案。这6种方案依次如下图所示。

                 

   

                   

输入

先输入一个整数n,表示放水果的格子总数为n*n。n取3到1000之间的整数(含3和1000)。

然后依次输入n*n个表示水果的数据,不同的水果用不同的数字表示,同一种水果用相同的数字表示。

表示水果的数字编号从1开始,不超过100。

输出

在输入数据对应的初始状态下,有几种点选并消除的选择方案。

输出方案数。

样例输入

6
1 1 2 2 2 2
1 3 2 1 1 2
2 2 2 2 2 3
3 2 3 3 1 1
2 2 2 2 3 1
2 3 2 3 2 2

样例输出

6

提示

#include <iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[1003][1003],cnt,flag,n,ans;
int  zan[4][2]= {1,0,0,1,-1,0,0,-1};
bool cha(int x,int y,int num)
{
    for(int i=0; i<4; i++)
    {
        if(y+zan[i][1] < 0 || y+zan[i][1] >= n || x+zan[i][0] < 0 || x+zan[i][0] >= n  ) continue;
        if(a[x+zan[i][0]] [y+zan[i][1]] == num) return true;
    }
    return false;
}

void dfs(int x,int y,int cnt,int data)
{
    if(y<0 || y>=n || x<0 || x>=n)
    {
        if(cnt > 1) flag=1;
        return ;
    }
    if(a[x][y]==data)
    {
        cnt++;
        a[x][y]=0;
        if(!cha(x,y,data))
        {
             if(cnt > 1) flag=1;return ;
        }
        for(int i=0; i<4; i++) dfs(x+zan[i][0],y+zan[i][1],cnt,data);

    }
}
int main()
{
    while(cin >> n)
    {
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                cin >>a[i][j];
        ans=0;
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
            {
                if(a[i][j])
                {
                    dfs(i,j,0,a[i][j]);
                    if(flag) ans++,flag=0;
                }
            }
        printf("%d\n",ans);

    }
    return 0;
}

下面是我在写了pOJ  NO.2386 Lake counting  之后,改了一下代码,发现也行的通,逻辑上也清晰了很多

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,m;
int st[1002][1002];
int dir[4][2]= {{1,0},{-1,0},{0,1},{0,-1}};
int flag;
void dfs(int x,int y,int data,int cnt) {
    st[x][y]=0;
    cnt++;
    for(int i=0; i<4; i++) {
        int newx=x+dir[i][0];
        int newy=y+dir[i][1];
        if(newx>=0 && newx <n && newy>=0 && newy <n && st[newx][newy]==data) {
            dfs(newx,newy,data,cnt);
        }
    }
    if(cnt >1) flag=1;
    return ;
}


int main() {
    while(scanf("%d",&n)!=EOF) {
        int ans=0;
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                scanf("%d",&st[i][j]);
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                if(st[i][j]) {
                    dfs(i,j,st[i][j],0);
                    if(flag)
                    {
                      ans++; flag=0;
                    }
                }
        printf("%d\n",ans);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值