问题描述:
我们有两个字符串m和n,如果它们的子串a和b内容相同,则称a和b是m和n的公共子序列。子串中的字符不一定在原字符串中连续。
例如字符串“abcfbc”和“abfcab”,其中“abc”同时出现在两个字符串中,因此“abc”是它们的公共子序列。此外,“ab”、“af”等都是它们的字串。
现在给你两个任意字符串(不包含空格),请帮忙计算它们的最长公共子序列的长度。
输入描述:
输入包含多组数据。
每组数据包含两个字符串m和n,它们仅包含字母,并且长度不超过1024。
输出描述:
对应每组输入,输出最长公共子序列的长度。
输入例子:
abcfbc abfcab
programming contest
abcd mnp
输出例子:
4
2
0
思路:这一类的题目都可以使用动态规划来解决。常规的动态规划是建立一个二维数组dp[len1+1][len2+1],dp[i][j]表示在字符串str1的前i-1个字符和字符串str2中的前j-1个字符的最长公共子序列,如果str1[i-1]等于str2[j-1],则dp[i][j]的值为dp[i-1][j],dp[i][j-1],dp[i-1][j-1]+1三者之间的最大值,如果如果str1[i-1]不等于str2[j-1],则dp[i][j]的值为dp[i-1][j],dp[i][j-1]两者之间的最大值。最后求出的dp[len1][len2]即为最长公共子序列的长度。
AC代码如下:
#include<iostream>
#include<string>
using namespace std;
int main(){
string str1,str2;
while(cin>>str1){
cin>>str2;
int len1=str1.size();
int len2=str2.size();
int dp[len1+1][len2+1];
if(len1==0 || len2==0)
return 0;
for(int j=0;j<=len2;j++)
dp[0][j]=0;
for(int i=0;i<=len1;i++)
dp[i][0]=0;
for(int i=1;i<=len1;i++)
for(int j=1;j<=len2;j++){
dp[i][j]=dp[i-1][j]>dp[i][j-1]?dp[i-1][j]:dp[i][j-1];
if(str1[i-1]==str2[j-1])
dp[i][j]=dp[i][j]>(dp[i-1][j-1]+1)?dp[i][j]:(dp[i-1][j-1]+1);
}
cout<<dp[len1][len2]<<endl;
}
return 0;
}
当然,我们也可以对上述方案的空间进行压缩,使用一位数组进行动态规划,AC代码如下:
#include<iostream>
#include<cstring>
using namespace std;
int main(){
int temp1,temp2;
string str1,str2;
while(cin>>str1){
cin>>str2;
int len1=str1.size();
int len2=str2.size();
int dp[len2+1];
memset(dp,0,sizeof(dp));
if(len1==0 || len2==0)
return 0;
for(int i=1;i<=len1;i++){
temp2=0;
for(int j=1;j<=len2;j++){
temp1=temp2;
temp2=dp[j];
dp[j]=dp[j-1]>dp[j]?dp[j-1]:dp[j];
if(str1[i-1]==str2[j-1])
dp[j]=dp[j]>(temp1+1)?dp[j]:(temp1+1);
}
}
cout<<dp[len2]<<endl;
}
return 0;
}