最长公共子序列

问题描述:

           我们有两个字符串m和n,如果它们的子串a和b内容相同,则称a和b是m和n的公共子序列。子串中的字符不一定在原字符串中连续。
例如字符串“abcfbc”和“abfcab”,其中“abc”同时出现在两个字符串中,因此“abc”是它们的公共子序列。此外,“ab”、“af”等都是它们的字串。
现在给你两个任意字符串(不包含空格),请帮忙计算它们的最长公共子序列的长度。

输入描述:
输入包含多组数据。

每组数据包含两个字符串m和n,它们仅包含字母,并且长度不超过1024。

输出描述:
对应每组输入,输出最长公共子序列的长度。

输入例子:
abcfbc abfcab
programming contest
abcd mnp

输出例子:
4
2
0

    思路:这一类的题目都可以使用动态规划来解决。常规的动态规划是建立一个二维数组dp[len1+1][len2+1],dp[i][j]表示在字符串str1的前i-1个字符和字符串str2中的前j-1个字符的最长公共子序列,如果str1[i-1]等于str2[j-1],则dp[i][j]的值为dp[i-1][j],dp[i][j-1],dp[i-1][j-1]+1三者之间的最大值,如果如果str1[i-1]不等于str2[j-1],则dp[i][j]的值为dp[i-1][j],dp[i][j-1]两者之间的最大值。最后求出的dp[len1][len2]即为最长公共子序列的长度。

AC代码如下:

#include<iostream>
#include<string>
using namespace std;
int main(){
    string str1,str2;
    while(cin>>str1){
        cin>>str2;
        int len1=str1.size();
        int len2=str2.size();
        int dp[len1+1][len2+1];
        if(len1==0 || len2==0)
            return 0;
        for(int j=0;j<=len2;j++)
            dp[0][j]=0;  
        for(int i=0;i<=len1;i++)
            dp[i][0]=0; 
        for(int i=1;i<=len1;i++)
            for(int j=1;j<=len2;j++){
               dp[i][j]=dp[i-1][j]>dp[i][j-1]?dp[i-1][j]:dp[i][j-1];
               if(str1[i-1]==str2[j-1])
                    dp[i][j]=dp[i][j]>(dp[i-1][j-1]+1)?dp[i][j]:(dp[i-1][j-1]+1);
        }
        cout<<dp[len1][len2]<<endl;
    }
    return 0;
}


当然,我们也可以对上述方案的空间进行压缩,使用一位数组进行动态规划,AC代码如下:


#include<iostream>
#include<cstring>
using namespace std;
int main(){
    int temp1,temp2;
    string str1,str2;
    while(cin>>str1){
        cin>>str2;
        int len1=str1.size();
        int len2=str2.size();
        int dp[len2+1];
        memset(dp,0,sizeof(dp));
        if(len1==0 || len2==0)
            return 0;
        for(int i=1;i<=len1;i++){
            temp2=0;
            for(int j=1;j<=len2;j++){
               temp1=temp2;
               temp2=dp[j];
               dp[j]=dp[j-1]>dp[j]?dp[j-1]:dp[j];
               if(str1[i-1]==str2[j-1])
                    dp[j]=dp[j]>(temp1+1)?dp[j]:(temp1+1);
            }
        }
            
        cout<<dp[len2]<<endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值