
Unet
fK0pS
女朋友每天催着我写博客
展开
-
训练神经网络,第一次遇到内存不足
原创 2020-01-07 23:57:08 · 1744 阅读 · 1 评论 -
如何使用unet网络进行训练和预测
环境配置git clone https://github.com/zhixuhao/unet.gitD:cd D:\KerasProject\unetconda create -n unet python=3.6activate unet conda install tensorflow-gpu==1.12conda install keraspip install jupyt...原创 2019-06-13 11:33:39 · 8857 阅读 · 2 评论 -
针对使用Unet预测的结果全是黑(白)色的分析及解决方案
•出现该问题的原因是:选用的loss函数有问题,目前使用的loss函数是binary_corssentropy,这种loss函数将正样本和负样本均拿来计算loss值•在医学图像分割的例子中,正样本(目标、器官等)非常的少,仅仅占图像面积中极少的一部分,但是负样本(背景或者无关区域)面积非常大,因此刚开始训练的时候,负样本就已经使得loss变得非常小了,准确率非常高了。•解决方案方案是:选用...原创 2019-07-26 13:26:17 · 12640 阅读 · 6 评论 -
steps_per_epoch=2000,epochs=100之间的区别
第一种解释:batchsize:中文翻译为批大小(批尺寸)。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练;iteration:中文翻译为迭代,1个iteration等于使用batchsize个样本训练一次;一个迭代 = 一个正向通过+一个反向通过epoch:迭代次数,1个epoch等于使用训练集中的全部样本训练一次;一个epoch = 所有训练样...原创 2019-07-27 11:43:07 · 22163 阅读 · 7 评论 -
在keras中model.fit_generator()和model.fit()有什么区别
首先Keras中的fit()函数传入的x_train和y_train是被完整的加载进内存的,当然用起来很方便,但是如果我们数据量很大,那么是不可能将所有数据载入内存的,必将导致内存泄漏,这时候我们可以用fit_generator函数来进行训练。https://keras.io/zh/models/model/fitfit(x=None, y=None, batch_...原创 2019-07-27 12:20:25 · 20185 阅读 · 2 评论 -
如何使用unet网络进行训练和预测——V2使用ShiXiong's Code
where is the code?Where is the main?How to run?activate unetipython notebook原创 2019-09-20 14:27:15 · 1465 阅读 · 0 评论