
ML
fK0pS
女朋友每天催着我写博客
展开
-
matplot绘制热图
import numpy as npimport matplotlibimport matplotlib.pyplot as pltvegetables = ["cucumber", "tomato", "lettuce", "asparagus", "potato", "wheat", "barley"]farmers = ["Farmer Joe", "Upland Bros.", "Smith Gardening", "Agrifun", .原创 2021-11-27 15:16:39 · 538 阅读 · 0 评论 -
如何使用 转移熵,互信息 构建网络连接?
如何使用 转移熵,互信息 构建网络连接?如何计算两个时间序列的互信息受到上述代码的启发:1、第一步把图像,reshape成一个向量;2、px怎么计算?通过直方图得到;3、互信息怎么计算?根据互信息的公式...原创 2021-11-27 12:31:46 · 2654 阅读 · 0 评论 -
GAN 网络如何训练。generator?
这种属于没有条件约束的 generator。如果把X加上来,就是有条件(约束)的generator了。如何训练generator?固定discriminator的参数,然后调整generator的参数,使得输出的结果,尽可能的接近1;...原创 2021-11-26 21:25:56 · 276 阅读 · 0 评论 -
深度学习领域中,有哪些可以来衡量两个分布距离的 方法?
https://www.youtube.com/watch?v=jNY1WBb8l4U&list=PLJV_el3uVTsMhtt7_Y6sgTHGHp1Vb2P2J&index=15&ab_channel=Hung-yiLee原创 2021-11-26 17:05:45 · 722 阅读 · 0 评论 -
如何使用Dijkstra算法寻找加权网络中的最短路径
原创 2021-11-10 20:43:53 · 645 阅读 · 0 评论 -
评价模型的方法Matthews correlation coefficient (MCC)
评价模型的方法,Matthews correlation coefficient (MCC)Matthews相关系数_YW_Vine的博客-CSDN博客写的蛮好的↑原创 2021-11-04 21:39:16 · 3861 阅读 · 0 评论 -
在神经生物学领域,使用深度学习,的十个技巧
在神经生物学领域,使用深度学习,的十个技巧。1、对数据集进行检查、arrangement(组织);2、对数据集的划分split;3、问题类别框架;4、选择什么样的算法?5、如何解决不平衡的数据集?6、超参数优化问题;7、解决过拟合的问题;8、模型性能参数的评价;9、选择开源的编程框架;10、寻求专家的反馈和帮助;...原创 2021-11-04 15:31:45 · 746 阅读 · 0 评论 -
pytorch tensor 数据类型转换
Y = torch.from_numpy(wipeAndPupil).to(X.device) # wipeAndPupil 从numpy转换为tensorY=Y.type(torch.cuda.FloatTensor)原创 2021-10-19 15:28:31 · 266 阅读 · 0 评论 -
2021-10-19
pytorch tensor拼接原创 2021-10-19 15:14:44 · 132 阅读 · 0 评论 -
pytorch numpy 转换成 tensor -> torch.from_numpy() . torch.Tensor to numpy
sub_ts = torch.from_numpy(sub_img) #sub_img为numpy类型原创 2021-10-19 15:11:30 · 314 阅读 · 0 评论 -
pytorch, 遍历dataloade时,如何获取原始index
pytorch,遍历dataloader的时候train_loader = DataLoader(train_set, batch_size=batch_size_train, shuffle=True)因为dataloader已经被shuffle过,如何知道,他在原始dataset中的indextorch.utils.data — PyTorch 1.9.1 documentation...原创 2021-10-19 14:12:05 · 1367 阅读 · 0 评论 -
torch中计算log时,以什么为底数?
torch中计算log,以什么为底数?答案是以e,自然对数为底数。2.7如何推断出来的?torch.log(torch.from_numpy(np.array(7.4))) = 2底数 = sqrt(7.4) = 2.7 = e参考https://blog.csdn.net/weixin_38145317/article/details/103288032为什么要知道底数呢?因为,我需要根据log_softmax的值,反推得到probability。...原创 2021-10-15 13:27:39 · 3127 阅读 · 1 评论 -
如何在pytorch中计算dataloader的mean和std
如何在pytorch中计算dataloader的mean和stddata = next(iter(train_loader))mean = data[0].mean()std = data[0].std()-----------came fromhttps://www.youtube.com/watch?v=bCQ2cNhUWQ8&t=58s&ab_channel=deeplizard原创 2021-10-13 13:31:36 · 628 阅读 · 0 评论 -
pytorch 数据集预处理
pytorch 数据集预处理1、定义transformstrain_tfm = transforms.Compose([ # transforms.ToPILImage(), # Resize the image into a fixed shape (height = width = 128) # transforms.Resize((128, 128)), # You may add some transforms here. # ToTensor()原创 2021-10-08 17:03:04 · 489 阅读 · 0 评论 -
pytorch DatasetFolder 划分 train and test
totall_set = DatasetFolder("../labeled", loader=tifffile.imread, extensions="tif", transform=None)train_set, test_set = torch.utils.data.random_split(totall_set, [batch_size_train, batch_size_test])train_loader = DataLoader(train_set, batch_size=batch_原创 2021-10-08 15:58:07 · 3375 阅读 · 1 评论 -
搭建一个简简单单的2D卷积神经网络
import torchimport torch.nn as nnimport torch.nn.functional as F#2D卷积神经网络input = torch.randn(1, 1, 28, 28)# With square kernels and equal strideconv1 = nn.Conv2d(1, 10, kernel_size=5)conv2 = nn.Conv2d(10, 20, kernel_size=5)conv2_drop = nn.Drop.原创 2021-10-07 18:18:42 · 381 阅读 · 0 评论 -
如何理解3D卷积神经网络核中的参数?
1、输出、输出的图片大小2、stride 控制,CNN卷积核一次挪动多少。padding,控制对原始图片填充多少个东西。能控制卷积之后的feature map的大小;(3, 3, 3),卷积核的大小,能够控制使用多少个原始像素参与卷积。# https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.htmlimport torchimport torch.nn as nninput = torch.ra.原创 2021-10-07 17:08:27 · 1594 阅读 · 0 评论 -
如何理解Precision和Recall?
如何理解Precision和Recall?Precision ,在预测结果中,正确预测了多少?P可以联想到pedict,预测;Recall,在真实样本中,正确预测了多少?R可以联想到real,真实;F1值,就是综合考虑了precision和recallF1 = 2*precision*recall/(precision+recall)如何翻译这两个词?---> 准确率和召回率 <---...原创 2021-10-07 13:18:41 · 661 阅读 · 0 评论 -
多模型融合技术
这篇博客讲得不错:https://zhuanlan.zhihu.com/p/152234745提到了:Weighted sum 对于权重为标量的加权求和方法,这种迭代的办法要求预训练模型产生的向量要有确定的维度,并且要按一定顺序排列并适合element-wise 加法[6]。我所要添加的DLC正是预训练模型、...原创 2021-08-30 15:14:16 · 154 阅读 · 0 评论 -
Deep Residual Learning解决的模型退化问题
坑如何理解https://www.zhihu.com/question/64494691/answer/786270699原创 2021-08-29 15:39:58 · 141 阅读 · 0 评论 -
文件夹如何转换为dataloader?
# Batch size for training, validation, and testing.# A greater batch size usually gives a more stable gradient.# But the GPU memory is limited, so please adjust it carefully.batch_size = 128# Construct datasets.# The argument "loader" tells how ...原创 2021-08-24 15:14:21 · 270 阅读 · 0 评论 -
pycharm连接局域网的jupyter
照着这篇博客好像成功了https://blog.csdn.net/Void_worker/article/details/101199850原创 2021-08-24 11:25:58 · 294 阅读 · 0 评论 -
使用Pytorch进行机器学习,必定要包含的内容
以下是一个demo,使用pytorch解决Regression类型任务# PyTorchimport torchimport torch.nn as nnfrom torch.utils.data import Dataset, DataLoader# For data preprocessimport numpy as npimport csvimport os# For plottingimport matplotlib.pyplot as pltfrom...原创 2021-08-24 09:58:10 · 751 阅读 · 0 评论 -
一个学习数据科学的可视化网站
https://setosa.io/ev/markov-chains/原创 2021-08-20 13:01:37 · 129 阅读 · 0 评论 -
相互独立和正交是什么关系?
坑原创 2021-08-20 13:00:49 · 2702 阅读 · 0 评论 -
PCA和ICA之间的联系和区别
https://www.quora.com/What-is-the-difference-between-PCA-and-ICA原创 2021-08-20 12:58:37 · 896 阅读 · 0 评论 -
ICA中的峰度(kurtosis)该怎么理解?
kurtosis该如何理解?https://blog.csdn.net/qq_36523839/article/details/88671873https://stats.stackexchange.com/questions/35319/what-is-the-relationship-between-independent-component-analysis-and-factor-analy?rq=1原创 2021-08-20 12:57:32 · 612 阅读 · 0 评论 -
PCA降维的主方向和协方差矩阵的特征向量,有什么关系?
PCA降维的主方向和协方差矩阵的特征向量,有什么关系?原创 2021-08-20 13:01:58 · 544 阅读 · 0 评论 -
给定一个协方差矩阵,如何构造出满足该协方差的样本?
how to generate data based on known covariance matrixhttps://stats.stackexchange.com/questions/120179/generating-data-with-a-given-sample-covariance-matrixgoogle yyds↓randn(n,d)的结果如下图:按照给定的协方差生成数据如下图...原创 2021-08-19 17:20:14 · 494 阅读 · 0 评论 -
PCA降维之后的样本,其协方差矩阵为对角矩阵。
我们知道PCA降维的目标函数是尽可能地保留原始样本X中的方差信息。所以降维后样本的协方差矩阵其对角线上元素尽可能得大我是理解,并认可的。但为什么非对角线元素均为零呢?降维之后的样本,各个维度之间的相关性完全被切除了。以下是实验code降维前样本协方差矩阵:可以看到d1和d2关系不大,但d1和d3关系密切;d2和d3关系也不大;降维后:样本的协方差矩阵:所以,为啥非对角线上的元素为0呢?难道是因为特征向量是正交的...原创 2021-08-19 17:02:43 · 536 阅读 · 0 评论 -
如何理解某种算法,具体掌握到什么程度时,可以说满意了?
如何理解某种算法,具体掌握到什么程度时,可以说满意了?原创 2021-08-19 15:03:12 · 106 阅读 · 0 评论 -
一定要用好note jupyter
一定要用好note jupyter优势:1、这个笔记要分析什么?可以直接写到jupyter中;有记笔记的优势;2、跑出来的结果可以保存在笔记中,兼容了PPT的功能;3、笔记可以用来分享;局限性:1、jupyter令人不满意的地方是:它无法在线debug;观察变量的形态,没有一个类似consle的东西。应该去看看jupyter的使用技巧。...原创 2021-08-19 14:43:23 · 139 阅读 · 0 评论 -
ICA、PCA、SVD三者之间的联系和区别
坑原创 2021-08-19 11:15:06 · 900 阅读 · 1 评论 -
样本的协方差矩阵的特征向量都是正交的嘛?
坑好像都是正交的,所以PCA降维属于正交分解。如果采用非正交的基,就是ICA降维了。原创 2021-08-19 00:08:04 · 645 阅读 · 0 评论 -
蒙特卡洛思想
通过采样的形式为,完成对模型参数θ的估计原创 2021-08-18 15:07:27 · 163 阅读 · 0 评论 -
对于贝叶斯理论来说,我们的核心目标是确定p(θ|X),即模型参数θ对于样本X的后验分布。
1、确定这个后验概率分布有什么用?在使用贝叶斯模型进行推断的时候,我们是基于已有样本X(下边的公式中用D表了,意义都一样),和新样本x*,给出该样本的类别估计(比如给出x*属于垃圾邮件的概率,等等)。那么这个类别估计等于什么呢?如下述公式所示:要考虑所有的模型参数θ(所以对θ进行了积分),对于每个θ,给出基于样本X的后验概率,最后基于该模型参数θ和样本x*,给出贝叶斯模型的推断结果,属于y^hat的概率。简单来说,使用贝叶斯模型进行推断的时候,考虑了所有的模型参数;每个模型参数的概率,基于.原创 2021-08-18 14:44:21 · 550 阅读 · 0 评论 -
贝叶斯模型、贝叶斯推断、贝叶斯估计三者有什么区别?
贝叶斯模型:Bayesian Model;贝叶斯推断:Bayesian inference;贝叶斯估计:Bayesian estimation;三者有什么区别?坑原创 2021-08-18 12:39:30 · 1359 阅读 · 0 评论 -
学习贝叶斯推断前,需要明确如下定义
https://en.wikipedia.org/wiki/Bayesian_inference原创 2021-08-18 12:30:11 · 117 阅读 · 0 评论 -
频率学派和贝叶斯学派争论的核心焦点是什么?
坑西瓜书第149页中间是这么描述的:1、频率学派认为模型参数虽然未知,但却是客观存在的固定值,因此可以通过优化似然函数等方法确定参数值;2、贝叶斯学派则认为,参数是未观察到的随机变量,其本身也具有分布。因此可以假设参数服从一个先验分布,然后基于观测到的样本,来计算参数的后验分布。----3、对两大学派感兴趣的同学可以看论文:【Efron 2005, Samaniego 2010】...原创 2021-08-18 11:34:57 · 297 阅读 · 0 评论 -
如何给出Bayesian Estimation模型W的分布?
Bayesian Estimation如何给出模型W的分布?坑W是一个列向量;现在的理解:1、Bayesian Estimation和(Maxium Likehood Estimation、Maxium a Posteri Estimation)不一样,前者能够给出模型参数的分布,后者只能给出模型参数的点估计;2、极大似然(MLE)是从样本出发,通过调整模型的参数,使得所有样本出现的可能性最大。而贝叶斯是从模型出发,已知样本的前提下,模型参数的分布是如何?我认为,两者唯一的相同点.原创 2021-08-17 16:43:18 · 206 阅读 · 1 评论