• 博客(1598)
  • 资源 (1)
  • 收藏
  • 关注

原创 打造高校软件测试实训新标杆——霍格沃兹测试开发学社一站式“教·学·练·赛”实训平台

霍格沃兹测试开发学社推出高校软件测试"教·学·练·赛"一站式实训平台,解决教学与企业实践脱节问题。平台提供五大功能模块:企业级实战环境、多领域案例库、前沿技术集成、灵活部署方案及持续更新服务。教师可一键布置作业、智能阅卷,学生能使用Selenium等主流工具进行电商等真实项目实训。平台支持云端/本地双部署,并定期更新AI测试等前沿内容,形成"教学-实训-就业"闭环。多家高校反馈该平台显著提升教学效率和学生实战能力,助力测试人才培养。

2025-05-30 15:12:34 645

原创 测试开发 | 相比 Selenium,Web 自动化测试框架 Playwright 有哪些强大的优势?

Playwright是微软开发的Web自动化测试框架,支持多平台和语言。相比Selenium,它无需驱动、采用Websocket通讯、执行更快,并内置录制、追踪等工具。文章详细对比了两者的差异,展示了Playwright在Python和Java中的安装及使用示例,包括页面操作、断言验证等功能。特别介绍了Codegen录制工具的参数配置,以及TraceViewer追踪功能如何记录测试细节。最后给出了测试人论坛搜索功能的自动化实现代码,演示了Playwright的实际应用场景。

2025-05-29 17:19:52 975

原创 一文掌握 browser-use:基于 DeepSeek 的浏览器自动化实战

Browser-Use是一款融合DeepSeek大模型与Playwright引擎的开源智能体工具,实现了自然语言驱动的浏览器自动化操作。其技术亮点包括: 采用低代码开发模式,通过自然语言指令生成脚本; 集成多模态交互能力,DOM解析精度达99%; 支持企业级私有化部署与多智能体协同; 深度适配DeepSeek模型,推理成本仅为GPT-4的1/5; 提供电商自动下单等完整场景解决方案。 工具包含任务规划、浏览器控制等模块化设计,支持异常自动重试机制,并配套详细的环境配置指南与实战案例代码。适用于自动化测试、数

2025-05-29 17:12:52 768

原创 如何构建系统化的人工智能知识图谱

本文探讨了如何构建系统化的知识图谱来提升人工智能测试的效率与效果。文章首先介绍了AI测试的复杂性,强调其需涵盖功能、性能、安全及公平性等多维评估。随后详细阐述了知识图谱的五大核心要素:测试策略制定、方法选择、数据管理、自动化测试和模型可解释性,并提供了实施步骤和实践案例。文章还指出知识图谱在跨领域应用中的潜力,最后提出了标准化推进、伦理考量和技术更新等未来挑战。通过系统化的知识图谱构建,可为AI测试提供全面指导,推动行业稳健发展。

2025-05-27 14:25:34 875

原创 2025深圳搞钱地图:按这张图找工作,房租少付1/3,工资多拿50%

为什么优先选择头部企业?🔍在深圳这座"中国硅谷",头部企业不仅是技术风向标,更是职业发展的黄金跳板:✅技术前沿性:率先接触AI、6G、元宇宙等尖端技术栈✅薪资竞争力:应届生年薪普遍30W+,资深专家可达百万级✅成长加速度:完善的导师制+跨国项目经验积累✅品牌溢价力:头部经历使跳槽薪资涨幅平均提升40%一、南山区:全球科技总部聚集地‌科技园片区‌腾讯‌(滨海大厦+前海新总部):主导AI、云计算、游戏生态字节跳动‌(后海总部):抖音、TikTok、飞书三大业务线。

2025-05-27 14:22:32 4570

原创 MCP+A2A协议如何推动AI智能体进化为超级分布式网络

本文探讨了MCP和A2A协议如何推动AI智能体协同进化。MCP协议通过标准化接口简化了AI模型与外部工具/数据源的交互,支持快速构建功能服务器;A2A协议则专注于智能体间的互操作性,实现跨平台任务协作。两者的结合为复杂业务流程自动化奠定基础,使AI从单一功能转向动态协作系统。文章还展示了构建MCP服务器的代码示例,并展望了这种协同在招聘等场景的应用前景,标志着智能协作新时代的到来。

2025-05-27 14:17:44 553

原创 测试开发工程师如何快速掌握AI智能体

《测试开发工程师如何快速掌握AI智能体公开课》将于5月28日20:00举行,由思寒老师主讲。课程涵盖AI智能体技术框架、测试工具平台应用及AI工作流实践等内容,包括BrowserUse、HogwartsAgent、OpenManusCline等工具详解,并设互动答疑环节。活动限时免费,报名可扫描海报二维码。配套资源提供测试开发学习路线、开源工具及专业版试用,帮助测试人员提升AI能力,实现300%效率提升。

2025-05-27 14:14:44 933

原创 深入解析:AI 智能体的八个关键概念

本文介绍了智能体技术的核心概念和应用,包括:1)智能体作为自主执行任务的AI系统;2)多智能体系统的协同优势;3)RAG技术增强知识检索;4)工作流优化任务执行;5)微调提升模型专业性;6)函数调用简化开发;7)MCP和A2A协议标准化协作。文章还推荐了霍格沃兹专业版AI工具及测试开发资源,涵盖Docker、Selenium、Python等技术教程,助力实现智能化测试开发。通过AI技术与测试流程的深度融合,可显著提升工作效率和准确性。

2025-05-27 14:12:05 803

原创 测试人生 | 91年女生 大专学历 3步逆袭:电子厂→软件测试→测试开发 跳槽涨薪全揭秘

本文分享了霍格沃兹测试开发学社一位优秀学员的学习心得与面试经验。学员原本从事电子信息技术行业,因薪资低而转行软件测试。通过学社的系统培训,学员从外包测试成功转型为测试开发,并顺利获得某知名互联网企业的测试开发岗位,薪资上涨15%。学员强调了系统性学习的重要性,特别是在自动化测试方面的突破。学习过程中,学员通过预习、实践和课后答疑,逐步掌握了测试开发的核心技能。面试时,学社提供的面试准备内容帮助学员顺利应对技术问题,最终成功获得理想职位。文章最后推荐了学社的AI自动化测试开发进阶班,为有志于测试开发的学习者提

2025-05-23 11:49:07 1005

原创 大厂案例拆解 | 敏捷研发模式下的测试流程

本期大厂案例拆解专题课聚焦敏捷研发模式下的测试流程,由北冥有鱼老师主讲。课程内容包括敏捷研发模式介绍、GPD方法论在企业内部的应用、敏捷测试模式下测试人员所需技能,以及企业测试序列职级标准与晋升要求的解读。公开课将于5月25日(周日)20:00举行,限时免费,欢迎对敏捷研发和测试流程感兴趣的观众参加。

2025-05-22 16:31:47 913

原创 AI 大模型入门 四:检索增强生成(RAG),自动生成精准用例!

测试开发工程师常面临用例维护难、覆盖率黑洞和文档与代码脱节等问题。检索增强生成(RAG)技术通过实时检索最新文档、自动生成精准测试用例并动态对齐线上数据,有效解决这些痛点。RAG的工作流程包括检索、增强和生成,能够自动抓取最新需求文档、结构化关键信息并输出可执行代码。其优势包括需求变更免疫、精准Mock数据生成、风险智能预测和报告可追溯。然而,RAG仍依赖文档质量,生成代码的可维护性也需人工审核。RAG正在重构测试开发,使测试代码能像“自动驾驶”一样感知需求变化,从而解放工程师,聚焦更高价值的工作。

2025-05-22 16:29:02 871

原创 Playwright跨浏览器自动化测试实践

Playwright是Microsoft开源的一款多语言支持的测试框架,具备无头浏览器自动化、自动等待机制和网络拦截能力等核心优势。它支持多种浏览器(如Chromium、WebKit、Firefox)和编程语言(如JavaScript、TypeScript、Python、C#、Java),适用于端到端测试、可视化回归测试等场景。通过并行执行、设备模拟和异常处理等最佳实践,Playwright能够有效提升测试效率。此外,它还能与CI/CD管道集成,生成测试报告,并支持Docker容器化部署。结合AI技术,Pl

2025-05-20 11:56:50 715

原创 Transforms预处理

在神经网络模型中,数据预处理是必不可少的步骤,因为模型接收的数据类型是Tensor,而非PIL对象。图像预处理的主要目的是消除无关信息,增强重要特征,从而提高识别算法的精度和可靠性。预处理方法包括像素亮度变换、几何变换、局部邻域预处理和图像复原等。Transforms是常用的图像预处理工具,提供了裁剪、翻转、旋转、标准化等多种操作,能够将PIL图像或numpy数组转换为Tensor格式,并进行归一化处理。通过Transforms,可以对图像进行数据增强,提升模型的泛化能力。例如,在FashionMNIST数

2025-05-19 18:35:42 927

原创 从“无效提问”到精准指令:测试工程师的AI高效沟通指南

提示词工程是指在与AI工具互动时,通过优化输入指令(如提问方式、关键词选择、上下文补充等)来更高效地获取所需结果。它类似于“与AI沟通的翻译技巧”,核心在于理解AI的逻辑习惯,用精准的语言引导其输出有价值的内容。对于软件测试工程师而言,掌握提示词工程能显著提升工作效率,尤其是在使用AI辅助工具时。例如,通过设计精准的提示词,可以快速生成测试场景、调试自动化脚本、生成测试数据或分析测试结果。关键技巧包括明确目标、赋予AI特定角色、拆解复杂任务、提供上下文线索等。提示词工程的核心原则是:越清晰的输入,越高效的输

2025-05-19 18:33:06 494

原创 AI大模型入门 三:5分钟速成Prompt公式,让AI生成代码的通过率从30%到90%

AI在生成测试用例时,可能会因为指令不够精确而“装傻”,导致输出不完整或不符合预期。通过优化提示工程(Prompt Engineering),可以显著提升AI的生成质量。提示工程的核心在于结构化输入设计和模型行为控制,旨在通过精确的指令引导AI生成确定性高、可测试的输出。测试工程师可以通过六大进阶法则优化提示工程,包括输入结构化、逆向思维、动态上下文控制、元指令优先、链式推理和自验证Prompt。此外,调试技巧和可视化工具也能帮助优化Prompt设计。掌握提示工程,测试工程师可以将自然语言转化为精准的测试需

2025-05-16 14:33:29 1040

原创 Playwright和Selenium哪个比较好?深度解析两大测试框架的“王者之争”

架构师必看:评估Playwright Test Server(https://playwright.dev/docs/test-parallel)实现分布式测试。新手入门:先用Playwright练手(官方学习路径:https://playwright.dev/docs/intro)“团队自动化测试效率低?头部企业新项目中,Playwright采用率超75%,但旧项目Selenium维护成本降低50%Playwright:直接与浏览器内核交互,速度提升30%-50%,并发测试资源消耗降低40%

2025-05-15 18:18:57 482

原创 当AI开始写测试用例:测试工程师的核心价值保卫战

测试工程师与人工智能的关系如同骑自行车,AI提供动力,测试工程师掌握方向。AI技术显著提升了测试效率,如某跨境电商通过AI工具将接口测试覆盖率提升至91%,并缩短了回归测试时间。然而,过度依赖AI可能导致测试思维的退化,如某社交App的AI工具未能发现核心漏洞。因此,测试工程师需在享受AI便利的同时,保持手动测试能力,构建反脆弱知识体系,并掌握业务场景翻译、系统破坏想象力和质量文化构建力等元技能。人机协作的最佳实践包括Google的“20%自由测试”制度和亚马逊的“测试策略双盲评审”,这些策略有助于优化人机

2025-05-15 18:15:03 1015

原创 什么是基于知识图谱的多模态推理?

多模态推理是指机器通过整合文本、图像、音频、视频等多种感官模态信息,结合逻辑分析与语义理解,推导出隐含结论的过程。与单模态推理相比,多模态推理具有信息互补、抗干扰性强的优势,但也面临数据对齐难度高的挑战。其三大特点包括互补性、语义关联和动态性。知识图谱则是一种以实体-关系-属性三元组为核心的结构化数据库,通过RDF或图数据库实现可视化表达。当多模态推理与知识图谱结合时,可以构建多模态知识图谱,增强理解深度、支持复杂推理并实现动态知识更新。这种结合在IT行业中有广泛应用,如智能代码审查系统、运维故障自愈系统等

2025-05-15 18:11:46 1075

原创 互联网人离职空窗,我该怎么回答HR最认可?

面试时HR盯着我的裁员经历反复盘问,空窗期超过1年是不是没救了?猎聘《2025职场空窗期调研报告》显示:‌83.6%的互联网求职者因裁员经历被质疑能力,空窗期超过6个月简历回复率暴跌至11.9%‌。但另一组数据更值得关注——‌能合理解释空窗期的候选人,入职转化率高达72.3%‌。我将用 ‌【场景还原+HR考核点+应答模板】‌的方式,给大家提供最新面试话术策略。

2025-05-15 18:09:56 1395

原创 AI大模型入门(二):不微调的大模型能用吗?

大模型(Large Language Models, LLMs)是通过海量数据和巨大参数量(通常10亿以上)训练而成的深度学习模型,具有规模效应、通用能力、涌现特性和多模态潜力等核心特征。与小模型相比,大模型在数据需求、计算资源、应用方式和泛化能力等方面有显著优势。主流大模型体系包括GPT系列、BERT系列和Transformer架构变体等。微调技术是在预训练模型基础上,使用领域特定数据进行参数调整,以实现领域知识注入、任务性能优化、输出风格控制和安全合规调整等目的。微调方法包括全参数微调、参数高效微调(P

2025-05-15 18:08:30 898

原创 AI Agent工作流解析:软件测试开发领域的实践

AIAgent(人工智能代理)是基于大语言模型的智能系统,能够通过工具调用、自主决策和持续学习完成特定任务。在软件测试开发中,AIAgent作为智能协作者,能够自动化测试、缺陷分析和环境管理。其核心能力来自领域知识库、工具链接口和记忆系统。Agent工作流是AIAgent完成任务的多步骤逻辑,具有动态适应性,能够自主生成用例、自动触发测试、闭环迭代和基于数据驱动的决策。Agent工作流由规划引擎、工具执行层和反思机制组成,能够智能生成用例、异常注入自愈和持续反馈优化。AIAgent在软件测试领域的应用场景包

2025-05-15 18:02:51 1014

原创 2025年北京最值得去的互联网公司

一、2025年北京软件测试招聘环境1. 市场需求与薪资趋势核心增长领域:AI大模型测试:需求增长45%(聚焦模型输出稳定性、伦理风险评估)。自动驾驶仿真测试:车企及供应商岗位激增,需掌握CARLA、VTD等工具。金融科技合规测试:受政策驱动,隐私计算、跨境支付系统测试岗薪资上浮30%。薪资分级:企业类型3-5年经验年薪关键技术要求一线大厂50-80万自动化框架+领域专精(如电商压测/云原生测试)外企/独角兽40-65万英语沟通+工具链创新(如CI/CD流水线设计)

2025-05-15 17:53:06 857

原创 AI大模型入门 (一):什么是大模型?

一、大模型定义狭义定义特指ChatGPT等大语言模型(LLM),通过千亿级参数训练,具备文本生成、逻辑推理等通用能力。广义定义涵盖CV/语音等领域的通用模型范式,演进路径:专用小模型 → 预训练+微调 → 大模型+人类对齐核心价值传统AI需为每个任务单独训练模型(如翻译模型、摘要模型),而大模型如同「瑞士军刀」,单模型应对多任务。二、AI技术分层架构关键差异对比:技术层级数据需求特征提取典型应用机器学习标注数据人工设计垃圾邮件分类深度学习部分标注半自动提取人脸识别。

2025-05-15 17:50:46 1076

原创 测试工程师集体摆烂?这自动化脚本日省8小时,代码覆盖率飙升80%

测试团队正面临传统脚本维护的困境,数据显示全球测试团队42%的时间消耗在脚本维护上,而自动化覆盖率的提升并未显著提高缺陷发现率。核心痛点包括脚本脆弱性、投入产出失衡和价值迷失。为解决这些问题,智能脚本的「三脑协同」架构应运而生,其中MCP协议通过AI大脑实现自然语言指令到代码的实时编译,流程编排引擎则通过拖拽式操作提升测试效率。实战案例显示,智能脚本在金融和电商行业显著提升了测试效率和覆盖率,同时降低了维护成本和缺陷率。测试工程师的角色也在转型,从「脚本劳工」向「质量指挥官」转变,未来测试智能体将实现自主执

2025-05-15 17:45:54 854

原创 通义千问Qwen3震撼开源!

阿里云近日发布了全面开源的新一代大语言模型Qwen3系列,包含两大混合专家模型(MoE)及六款密集模型,覆盖从超大规模到轻量级的多样化需求。Qwen3系列在代码理解、多语言支持(119种语言)及混合推理模式上实现突破,支持32K长文本解析和复杂逻辑推理。轻量级模型Qwen3-30B-A3B激活参数仅30亿,推理速度提升40%,微型模型Qwen3-4B支持本地部署,CPU环境流畅运行。模型已在HuggingFace、ModelScope等平台开放商用,开发者可通过API调用或本地部署快速集成。Qwen3系列专

2025-05-15 17:37:36 708

原创 谷歌A2A vs Anthropic MCP协议对比解析

AI协作协议主要解决系统间的交互问题,具体体现在两种场景:AI客服与库存系统的实时库存核对(A2A协议)和大语言模型自动调用更新后的知识库数据(MCP协议)。A2A协议专注于实时动作指令传递,采用请求-响应模式,适用于智能硬件联动和服务间API调用。MCP协议则侧重于跨模型上下文管理,采用异步广播与增量更新,适用于多轮对话系统和多模型协作任务。测试开发需关注数据验证、性能瓶颈分析和安全防护策略。企业选型应根据业务需求决定使用A2A还是MCP协议。实战案例包括物流系统和医疗问答系统的应用。学习资源推荐包括Go

2025-05-15 17:30:08 588

原创 一文彻底搞懂Transformer:原理、应用与测试开发指南

Transformer是一种由Google于2017年提出的深度学习模型架构,主要用于处理序列数据,如文本。它通过自注意力机制和位置编码解决了传统RNN和LSTM在处理长序列和计算效率上的问题。Transformer的核心结构包括编码器和解码器,能够并行处理数据并捕捉长距离依赖关系,使其在自然语言处理(NLP)领域表现卓越。作为测试开发人员,理解Transformer有助于测试AI系统、自动化测试和异常检测。常见的Transformer模型如BERT和GPT系列已在企业级应用中广泛使用,如客服机器人和日志分

2025-05-15 17:26:05 1223

原创 通义千问Qwen3震撼开源!

未来,随着测试自动化工具和AI技术的发展,精准测试将进一步提升效能,成为推动软件开发迈向智能化的核心助力。使用静态分析和动态测试工具,统计被测试覆盖的代码比例,实时调整测试策略,确保高覆盖率。扎实的业务分析测试方案制定能力,扎实的业务流程分析与功能测试能力,丰富的项目实战经验,扎实的编程能力与自动化测试能力。本文是一位非计算机专业出身的测试工程师,通过自学和参加霍格沃兹测试学院的课程,成功从功能测试转型到自动化测试,并在一年内薪资翻倍的历程。

2025-04-30 13:33:42 790

原创 谷歌A2A vs Anthropic MCP协议对比解析

一、场景需求:AI协作协议要解决什么?‌假设你需要实现以下两种系统交互:场景1‌:AI客服与库存系统实时核对商品库存(‌强实时交互‌)场景2‌:大语言模型自动调用更新后的知识库数据(‌上下文同步‌)这两个场景背后正是‌A2A‌(点对点交互)与‌MCP‌(上下文共享)的核心差异。二、协议核心差异:A2A与MCP的本质区别‌设计目标‌:‌实时动作指令传递‌技术特点‌:基于请求-响应模式(类似RPC)结构化数据交互(JSON/Protobuf)典型应用:智能硬件联动、服务间API调用。

2025-04-27 11:35:56 1044

原创 一文彻底搞懂Transformer:原理、应用与测试开发指南

随着AI技术的快速发展,Transformer已经成为测试开发人员必须了解的核心技术之一。今天,我们将从基础原理到实际应用,全方位解析这个技术架构。1. Transformer是什么?简单来说,Transformer是一种深度学习模型架构,最初由Google在2017年提出,主要用于处理序列数据(如文本)。它彻底改变了自然语言处理(NLP)领域,现在几乎所有先进的AI语言模型(如GPT、BERT等)都基于Transformer架构。2. 为什么需要Transformer?

2025-04-27 11:34:23 807

原创 用知识图谱重构电商测试用例:精准覆盖业务场景的实践

在电商系统的测试中,你是否经常遇到这些问题?✅‌ 场景遗漏‌:测试用例覆盖不全,上线后才发现关键路径未测试✅‌ 重复劳动‌:不同模块的测试用例存在大量冗余✅‌ 维护困难‌:业务规则变更后,需要手动更新数十个关联用例✅‌ 效率低下‌:人工编写用例耗时耗力,难以应对快速迭代‌破局方案‌:‌知识图谱(Knowledge Graph)+ 自动化测试‌本文将分享如何用知识图谱技术重构电商测试用例体系,实现:🔹‌ 业务场景100%精准覆盖‌🔹‌ 用例自动生成与智能维护‌🔹‌ 复杂链路异常注入自动化。

2025-04-25 16:46:18 963

原创 月薪3K测试 vs 30K测开:差距在这3个技能​

在2025年的互联网职场,测试岗位的薪资差距已不再是秘密:初级功能测试工程师的月薪徘徊在3K-8K,而资深测试开发(测开)工程师的薪资却能轻松突破30K。这种悬殊的背后,究竟是行业“内卷”的无奈,还是技能鸿沟的必然?本文通过真实案例和行业数据,拆解测试与测开的核心差距,助你找到职业跃升的破局点。技能差距一:编程能力与自动化测试框架开发月薪3K测试的困境:手工测试为主:依赖现成工具执行测试用例,重复劳动多,效率低。例如,某电商平台的功能测试员每天需手动验证200+页面,耗时6小时以上。

2025-04-24 11:49:02 1022

原创 AI测试工具明明提升了效率,为什么我们反而更忙了?

AI不会取代测试工程师,但会用AI的测试工程师正在取代不用AI的同行。跨部门沟通耗时从日均0.8小时→3.2小时(+300%)通用数据驱动测试框架 hogwarts-ddt 专业版。AI完成暴雨夜视测试仅需2小时(人工需3周)某银行测试团队通过调整阈值,使误报率从15%降至4%‌识别速度提升‌:单笔交易风险检测从3秒→80毫秒。原有工作‌:每天执行300条核心用例(耗时6小时)熟练使用LabelStudio标注工具。‌人力节省‌:反欺诈团队从20人缩减至8人。困境1:从执行者到AI训练师的角色转换。

2025-04-23 11:48:59 911

原创 爱测智能化测试平台工具使用分享

打工人实测!被这款AI测试智能体狠狠拿捏了效率密码🔑🌟【需求到用例 一键生成】🌟还在对着需求文档抠脑壳写用例?现在直接丢给它:✅ 需求/设计文档秒变测试用例✅ 研发代码也能反向生成测试场景✅ 已有手工用例自动建模+业务流程分析🤖【自动化测试新次元】🤖✅ 数据驱动测试:Excel/CSV秒变测试数据池✅ 第三方工具全家桶:Selenium/Postman无缝集成✅ 手工用例自动变脚本:录屏操作→生成代码→一键执行(测试报告直接生成步骤+断言,甲方看了都夸专业)

2025-04-23 11:43:21 703

原创 AI狂飙时代,我们测试工程师会被“优化“吗?

未来我会被AI取代吗?这个问题,问出了很多人的好奇和担忧。在今年闭幕的全国两会上,从会场到驻地,代表委员们也议论风生。我向DeepSeek求证——“你被问最多的关于人工智能的问题是什么?”“AI会取代人类的工作吗?”位列榜首。"听说AI能自动生成测试用例了,咱们会不会被淘汰?"这种职业焦虑正在蔓延——当GitHub Copilot开始编写测试脚本,当智能平台自动定位缺陷根源,我们是否正在见证测试工程师的"工业革命"?先别慌!

2025-04-23 11:40:17 823

原创 Meta 发布了最新 AI 模型系列 ——Llama 4

Meta 发布了最新 AI 模型系列 ——Llama 4,这是其 Llama 家族的最新成员。该系列包括 Llama 4 Scout、Llama 4 Maverick 和 Llama 4 Behemoth。所有这些模型都经过了大量未标注的文本、图像和视频数据的训练,以使它们具备广泛的视觉理解能力。在大模型竞技场(Arena),Llama 4 Maverick 的总排名第二,成为第四个突破 1400 分的大模型。其中开放模型排名第一,超越了 DeepSeek;

2025-04-21 13:37:24 985

原创 OpenAI宣布,曾被视为技术标杆的GPT-4模型将从ChatGPT服务中退役

GPT-4o的指令跟随一致性达92%,但模糊的指令只会得到平庸的结果。学会精准提问、拆解复杂任务,才是关键。例如,与其问“写一篇营销文案”,不如细化到“针对30岁女性用户,突出产品环保特性的小红书风格文案”。

2025-04-21 13:33:36 793

原创 中国信通院联合行业巨头启动“可信AI智能体测试床”,加速智能体技术标准化​

2025年4月14日,中国信息通信研究院(以下简称“中国信通院”)在南京举办的“人工智能赋能新型工业化深度行”活动中宣布,正式启动“可信AI智能体测试床”建设工作。该项目联合华为、百度、金蝶软件、联通数科、中国移动研究院、VIVO、吉利汽车、华晨宝马等十余家头部企业,旨在构建覆盖多智能体协同测试的标准化环境,推动智能体技术从实验室走向产业规模化应用。一、破解智能体落地难题,构建一体化测试体系。

2025-04-17 14:56:19 875

原创 五大AI Agent框架选型与三3避坑策略:测试工程师的实战指南

一、选型核心维度:测试开发者必须关注的4大要素可测试性:是否提供调试接口、日志追踪、性能监控工具工具链完整性:SDK支持、CI/CD集成能力、自动化测试框架兼容性资源消耗基线:单Agent内存占用、多线程并发下的稳定性表现企业级支持:私有化部署方案、安全审计报告、合规性认证二、主流框架解析:技术背景与测试适配性技术背景:模块化设计,支持RAG增强、记忆管理测试适配性✅提供LangSmith调试平台,支持全链路追踪❌文档结构混乱,单元测试覆盖率仅62%(第三方评测)

2025-04-16 11:07:38 1067

原创 AI时代测试开发者的核心技术体系

根据Gartner 2023年报告,78%的测试团队已部署AI技术,测试效率平均提升50%。霍格沃兹测试开发学社教学数据显示,掌握AI技术的测试工程师薪资溢价达65%。以下为测试开发者必须掌握的五大AI技术模块:一、大语言模型(LLM)在测试中的应用原理1.1 核心技术栈Prompt工程框架‌精准描述测试需求的自然语言交互范式测试脚本生成‌基于代码上下文自动补全测试用例(Python/Java)缺陷报告分析‌LLM驱动的日志模式识别与根因定位1.2 实战工具链。

2025-04-14 12:27:16 604

软件测试高频面试题思维导图

软件测试高频面试题,适合应届毕业生或者功能测试的同学,突击面试技巧,跳槽前准备 包含: 个人情况如何介绍 测试基础与流程方面常见问题 网络基础常见面试题 测试用例设计思路是什么 测试流程管理工具介绍 常用的测试工具面试题 Bug定位方面的常见问题 更多 web自动化测试、app自动化测试、接口自动化测试、测试平台开发、持续集成、持续交付、覆盖率分析、代码插桩、前沿技术方面资料可以加我领取 如果需求阿里、百度、腾讯、字节跳动、京东、金山、拼多多等名企大厂面试题的也可以联系我

2022-08-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除