奇异值分解简要笔记

奇异值分解(SVD)是线性代数中的一种矩阵分解方法,不同于对称矩阵的正交对角化,它适用于普通矩阵。SVD可展开为多个矩阵的和,用于主成分分析和潜在语义分析,常用于图像压缩和文本降维。在实际应用中,如潜在语义分析,处理document-term矩阵时,SVD通过Truncated SVD进行降维,并有不同的降维公式依据不同的视角。
摘要由CSDN通过智能技术生成

特征值分解

特征值分解可以看作是换基,线性变换在新基下表现为仅仅是对各个坐标轴做伸缩,然后再换回原来的基。
对称矩阵的特征值分解有更好的性质,它可以保证新基是标准正交基。

对称矩阵

正交对角化

对称矩阵有非常好的性质——可以正交对角化。
就是说对称矩阵A可以用特征值和特征向量分解成 A = P D P T A=PDP^T A=PDPT的形式。
其中D是对角矩阵,对角线上是A的特征值。P的列向量是A的标准正交基。
这个形式很好,P是正交矩阵,对应是正交变换。正交变换保留了内积,所以也就保留了角度和距离。这在分类和聚类里面都是很重要的,因为衡量两个向量相似度就是用角度或者距离。
正交变换从几何上看就是旋转(或者旋转加镜面反转)。

谱分解

P的列是一组标准正交基:
P = [ u 1 , ⋯   , u n ] P = [\mathbf{u}_1, \cdots , \mathbf{u}_n] P=[u1,,un]
那么A可以分解成n个矩阵的和:
A = λ 1 u 1 u 1 T + λ 2 u 2 u 2 T + ⋯ + λ n u n u n T A=\lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \cdots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T A=λ1u1u1T+λ2u2u2T++λnununT

普通矩阵分解

普通矩阵就不像对称矩阵那么好可以正交对角化。但是普通矩阵可以做奇异值分解,它与对称矩阵的正交对角化是类比关系。

奇异值分解

设A是一个 m × n m \times n m×n的矩阵,则它可以分解成:
A = U Σ V T A = U \Sigma V^T A=UΣV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值