特征值分解
特征值分解可以看作是换基,线性变换在新基下表现为仅仅是对各个坐标轴做伸缩,然后再换回原来的基。
对称矩阵的特征值分解有更好的性质,它可以保证新基是标准正交基。
对称矩阵
正交对角化
对称矩阵有非常好的性质——可以正交对角化。
就是说对称矩阵A可以用特征值和特征向量分解成 A = P D P T A=PDP^T A=PDPT的形式。
其中D是对角矩阵,对角线上是A的特征值。P的列向量是A的标准正交基。
这个形式很好,P是正交矩阵,对应是正交变换。正交变换保留了内积,所以也就保留了角度和距离。这在分类和聚类里面都是很重要的,因为衡量两个向量相似度就是用角度或者距离。
正交变换从几何上看就是旋转(或者旋转加镜面反转)。
谱分解
P的列是一组标准正交基:
P = [ u 1 , ⋯ , u n ] P = [\mathbf{u}_1, \cdots , \mathbf{u}_n] P=[u1,⋯,un]
那么A可以分解成n个矩阵的和:
A = λ 1 u 1 u 1 T + λ 2 u 2 u 2 T + ⋯ + λ n u n u n T A=\lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \cdots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T A=λ1u1u1T+λ2u2u2T+⋯+λnununT
普通矩阵分解
普通矩阵就不像对称矩阵那么好可以正交对角化。但是普通矩阵可以做奇异值分解,它与对称矩阵的正交对角化是类比
关系。
奇异值分解
设A是一个 m × n m \times n m×n的矩阵,则它可以分解成:
A = U Σ V T A = U \Sigma V^T A=UΣV