Numpy
生成随机数:
numpy.random.rand( d0,d1,d2…dn) :随机生成一个范围为[0, 1)的向量(d0,d1,d2,…dn)
输入:
import numpy
numpy.random.rand(2,2)
输出:
array([[0.71896018, 0.16052066],
[0.53589854, 0.48343021]])
```
numpy.random.randint(a,b,c):随机生成c个范围为[a,b)的整数
```python
输入:
import numpy
##随机数,取[最小值,最大值)
numpy.random.randint(1,6,10)
输出:
array([4, 4, 1, 5, 1, 1, 1, 3, 5, 2])
numpy.array([…]) :生成数组
#定义数组
输入:
import numpy
x=numpy.array([[1,2,3],[4,5,6],[7,8,9]])
输出:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
Pandas
pandas.Series([a,b,c,d…n]) :生成一维数组
输入:
#定义数组
import Pandas as pd
y=pd.Series([1,2,3,4,5,6,7,8,11,9,10,0,1,2])
输出:
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 11
9 9
10 10
11 0
12 1
13 2
dtype: int64
pandas.DataFrame([ [a,b,c],[d,e,f],[g,h,i] ]) :生成二维数组
输入:
#二维数组
yy=pd.DataFrame([[1,2,3,4],[5,6,7,8],[10,9,8,7]])
#显示头5个,接收一个参数n,表示显示头n个
yy.head()
#显示尾5个
yy.tail()
#显示信息,50%为中位点,25%为数组的1/4点,min最小值,max最大值,mean平均值
#std标准差
print(yy.describe())
输出:
0 1 2 3
0 1 2 3 4
1 5 6 7 8
2 10 9 8 7
------------------------------------------
0 1
1 2
2 3
3 4
4 5
dtype: int64
------------------------------------------
9 9
10 10
11 0
12 1
13 2
dtype: int64
------------------------------------------
0 1 2 3
count 3.000000 3.000000 3.000000 3.000000
mean 5.333333 5.666667 6.000000 6.333333
std 4.509250 3.511885 2.645751 2.081666
min 1.000000 2.000000 3.000000 4.000000
25% 3.000000 4.000000 5.000000 5.500000
50% 5.000000 6.000000 7.000000 7.000000
75% 7.500000 7.500000 7.500000 7.500000
max 10.000000 9.000000 8.000000 8.000000
常用函数
sigmoid、标准化、归一化
#sigmoid函数
def sigmoid(X):
#Compute sigmoid function
return =1.0/(1.0+ np.e **(-1.0* X))
#标准化
def standardization(data):
mu = numpy.mean(data, axis=0)
sigma = numpy.std(data, axis=0)
return (data - mu) / sigma
#归一化(取值为0-1)
def normalization(data):
_range = numpy.max(data) - numpy.min(data)
return (data -numpy.min(data)) / _range
常用操作
读取excel : pandas.read_excel() :
读取txt : numpy.loadtxt(“url”,delimiter=‘xxx’);(用xxx进行分割)
输入:
#读excel
import pandas as pd
pd.read_excel("./test.xlsx");
print(excel)
输出:
序号 A B
0 1 34 123
1 2 23 124
2 3 12 125
3 4 42 123
#读txt
输入:
data1=np.loadtxt("./data1.txt",delimiter=',');
输出:
[[30.28671077 43.89499752 0. ]
[35.84740877 72.90219803 0. ]
[60.18259939 86.3085521 1. ]
[79.03273605 75.34437644 1. ]]