【python】个人笔记

Numpy

生成随机数:
numpy.random.rand( d0,d1,d2…dn) :随机生成一个范围为[0, 1)的向量(d0,d1,d2,…dn)

输入:
	import numpy
	numpy.random.rand(2,2)
输出:
	array([[0.71896018, 0.16052066],
	       [0.53589854, 0.48343021]])
	```
	numpy.random.randint(a,b,c):随机生成c个范围为[a,b)的整数
```python
输入:
	import numpy
	##随机数,取[最小值,最大值)
	numpy.random.randint(1,6,10)
输出:
	array([4, 4, 1, 5, 1, 1, 1, 3, 5, 2])

numpy.array([…]) :生成数组

#定义数组
输入:
	import numpy
	x=numpy.array([[1,2,3],[4,5,6],[7,8,9]])

输出:
	array([[1, 2, 3],
	       [4, 5, 6],
	       [7, 8, 9]])

Pandas

pandas.Series([a,b,c,d…n]) :生成一维数组

输入:
	#定义数组
	import Pandas as pd
	y=pd.Series([1,2,3,4,5,6,7,8,11,9,10,0,1,2])
输出:
	0      1
	1      2
	2      3
	3      4
	4      5
	5      6
	6      7
	7      8
	8     11
	9      9
	10    10
	11     0
	12     1
	13     2
	dtype: int64

pandas.DataFrame([ [a,b,c],[d,e,f],[g,h,i] ]) :生成二维数组

输入:
	#二维数组
	yy=pd.DataFrame([[1,2,3,4],[5,6,7,8],[10,9,8,7]])
	#显示头5个,接收一个参数n,表示显示头n个
	yy.head()
	#显示尾5个
	yy.tail()
	#显示信息,50%为中位点,25%为数组的1/4点,min最小值,max最大值,mean平均值
	#std标准差
	print(yy.describe())
输出:
		0	1	2	3
	0	1	2	3	4
	1	5	6	7	8
	2	10	9	8	7
------------------------------------------
		0    1
		1    2
		2    3
		3    4
		4    5
		dtype: int64
------------------------------------------
		9      9
		10    10
		11     0
		12     1
		13     2
		dtype: int64
------------------------------------------
	               0         1         2         3
	count   3.000000  3.000000  3.000000  3.000000
	mean    5.333333  5.666667  6.000000  6.333333
	std     4.509250  3.511885  2.645751  2.081666
	min     1.000000  2.000000  3.000000  4.000000
	25%     3.000000  4.000000  5.000000  5.500000
	50%     5.000000  6.000000  7.000000  7.000000
	75%     7.500000  7.500000  7.500000  7.500000
	max    10.000000  9.000000  8.000000  8.000000

常用函数

sigmoid、标准化、归一化

#sigmoid函数
def sigmoid(X):
    #Compute sigmoid function
    return =1.0/(1.0+ np.e **(-1.0* X))
#标准化
def standardization(data):
    mu = numpy.mean(data, axis=0)
    sigma = numpy.std(data, axis=0)
    return (data - mu) / sigma
#归一化(取值为0-1)
def normalization(data):
    _range = numpy.max(data) - numpy.min(data)
    return (data -numpy.min(data)) / _range

常用操作

读取excel : pandas.read_excel() :
读取txt : numpy.loadtxt(“url”,delimiter=‘xxx’);(用xxx进行分割)

输入:
#读excel
import pandas as pd
pd.read_excel("./test.xlsx");
print(excel)
输出:
	   序号  A    B
	0   1   34  123
	1   2   23  124
	2   3   12  125
	3   4   42  123

#读txt
输入:
	data1=np.loadtxt("./data1.txt",delimiter=',');
输出:
	[[30.28671077 43.89499752  0.        ]
	 [35.84740877 72.90219803  0.        ]
	 [60.18259939 86.3085521   1.        ]
	 [79.03273605 75.34437644  1.        ]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值