给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
树中节点的数目在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
//第一种方法是将路径值之和相加再比较
class Solution {
public:
bool aa = false;
void sumcount(TreeNode*root,vector<int>& ve,int targetSum)
{
if(aa==true)return;
if(root==nullptr)return;
ve.push_back(root->val);
if(root->left==nullptr&&root->right==nullptr)
{
int size = ve.size();
int sum= 0;
for(int i=0;i<size;i++)
{
sum+=ve[i];
}
if(sum==targetSum)aa=true;
}
if(root->left&&aa==false)
{
sumcount(root->left,ve,targetSum);
ve.pop_back();
}
if(root->right&&aa==false)
{
sumcount(root->right,ve,targetSum);
ve.pop_back();
}
}
bool hasPathSum(TreeNode* root, int targetSum) {
if(root==nullptr)return false;
vector<int>ve;
sumcount(root,ve,targetSum);
return aa;
}
};
//第二种是直接递归的时候就将当前节点的值减掉
class solution {
private:
bool traversal(treenode* cur, int count) {
if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回
if (cur->left) { // 左
count -= cur->left->val; // 递归,处理节点;
if (traversal(cur->left, count)) return true;
count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
count -= cur->right->val; // 递归,处理节点;
if (traversal(cur->right, count)) return true;
count += cur->right->val; // 回溯,撤销处理结果
}
return false;
}
public:
bool haspathsum(treenode* root, int sum) {
if (root == null) return false;
return traversal(root, sum - root->val);
}
};