【动态规划】nxm矩阵,起点(1,1),终点(n,m)。每次可以往下或者往右走,每次步数需要是奇数,求路径数量。

本文探讨了一个有趣的问题:在一个n×m的矩阵中,从左上角出发到达右下角,每一步只能向下或向右移动,并且总步数必须为奇数的情况下,求出所有可能的路径数量。提供了一段C++代码实现这一计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

现在有一个n×m矩阵,小红在(1,1),终点(n,m)。(1,1)在左上,(n, m)在右下。每次可以往下或者往右走,步数需要是奇数。
小红想知道她有多少种方案到终点,你能帮她算一下吗?
在这里插入图片描述
测试样例:

1
2 4
输出结果:6
2
5 4
3 6
输出结果:66
54

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ps

对了,这题目和leetcode有一道很像,但是不一样
https://leetcode.cn/problems/unique-paths/

代码:

这个代码自己写的 没有提交,不确定对

#include<iostream>
#include<string>
#include<algorithm>
#include<vector>
using namespace std;
#define M 1000000007
int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n));
        f[0][0] = 1;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                // f[i][j] = f[i - 1][j] + f[i][j - 1];
                if(i == 0 && j == 0){
                    continue;
                }
                for(int k= j-1; k >= 0; k -= 2){
                    f[i][j]= (f[i][j] + f[i][k])% M;
                }
                for(int k= i-1 ;k >= 0;k -= 2){
                    f[i][j]= (f[i][j] + f[k][j])% M;
                }
            } 
        }
        return f[m - 1][n - 1];
}
int main(){ 
    int T;
    cin>>T;
    while(T--){
        int m,n;
        cin>>m>>n;
        cout<< uniquePaths(m,n)<<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1900_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值