01背包入门

01背包入门问题

题意    背包体积为V    有n个物品 体积为v[i]  价值为w[i]    求解背包能装进去的物品最大价值

dp思路  

我们用一个二维数组dp     dp[ i ][ j ]代表面对第i个物品时 且 背包容量为 j 时 背包内的最大价值

首先  判断 j 

如果 j<第i件物品的体积 也就是 j<v[i]  则不能放下第 i 个物品  所以此时背包的最大价值 就是 dp[ i-1 ][ j ]

如果 j>=v[ i ] 那么说明可以把第 i 件物品放进去。 此时 有两种选择 放 或者不放

      1.如果放 dp[ i ][ j ]=dp[ i-1 ][ j - v[ i ] ] + w[ i ];

                       (等于面对第 i-1 件物品 体积为 j - v [ i ] 时候的最大价值 + w[ i ] )

      2.如果不放dp[ i ][ j ] = dp[ i-1 ][ j ]

所以 状态转移方程

if(j<v[i])  dp[i][j]=dp[i-1][j];
else        dp[i][j]=max(dp[i-1][j-v[i]]+w[i],dp[i-1][j]);

上边是思路 

我们下边解释一下这个状态转移的原理

我们来看一个例子。

假设现在有一个背包 体积 V=10 有5件物品  价值和体积如下

物品编号12345
体积34325
价值2443

2

然后我们利用上边解题思路里的递推式计算出来一个二维的dp数组

我们先看这个dp数组是什么

dp12345678910
10022222222
20024446666
300444688810
4034477891111
5034477891111

首先要记住  这个二维的dp数组dp[ i ][ j ]代表的是什么  dp[ i ][ j ]代表面对第i个物品时 且 背包容量为 j 时 背包内的最大价值

那么我们来看几个点

dp[1][1] 代表面对第一个物品背包容量是1的时候  第一个 物品体积是3  放不下 所以背包此时价值为dp[1][1]=0。

再去看dp[1][3] 代表面对第一个物品背包容量是3的时候  那这个时候可以放下了 所以dp[1][3]=2 第一件物品的价值。

而你观察第一行  第一行代表的是 面对第一件物品的时候  那么不论背包体积 j 变为多大  价值也最大就是2  因为只有第一件。

你可以再多看几个点   明白了dp数组的含义  如果你明白了   现在我们解决下面这个问题

上边的递推式中 这一句  dp[ i ][ j ] = max(dp[ i-1 ][ j - v[ i ] ] + w[ i ] , dp[ i-1 ][ j ]);为什么正确呢?

我们 观察dp[1][3] 当背包容量为3 面对第一件的时候  价值是2  因为第一件可以放下

dp[2][4]呢 此时面对第二件物品 容量为4   第二件物品的体积是4 显然 可以放下  但是1和2不能同时放进去

显而易见 此时放2号物品价值会更大  而我们这个时候执行的语句是 dp[ i ][ j ] = max(dp[ i-1 ][ j - v[ i ] ] + w[ i ] , dp[ i-1 ][ j ]);

后者dp[ i-1 ][ j ] 代表不放2号  

前者dp[ i-1 ][ j - v[ i ] ] + w[ i ]代表什么呢 

                 首先  j -v[ i ]说明 背包容量减去现在2号的体积 也就是把2号装进去多余的体积 

                  i - 1是说对于前边 i -1件物品  所以dp[ i-1 ][ j - v[ i ] ] 就是把2号装进去 还多余的空间所能装的价值

                  然后再加上2号的价值  就是 放入2号物品后背包所能装的价值

所以 可以看出  这个max()里面的两个式子代表的就是 放与不放的两种状态 而dp[ i ][ j ]则会选择最优的状态

恰好装满与不必装满

https://blog.csdn.net/yoer77/article/details/70943462    参考

我们看到的求解最优解的背包问题中,实际上有两种不太相同的问法。
1. 要求”背包恰好装满“ 时的最优解
2. 不要求背包一定要被装满时的最优解

我们上面所讨论的解法就是第2种问题, 不要求背包一定要被装满时的最优解。
一种区别这两种问法的实现方法是在初始化的时候有所不不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了 dp[0]为0,

其他dp[1...W]均设为−∞ ,这样就可以保证最终得到 dp[W] 是一种恰好装满背包的最优解
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将dp[0...W]全部设为0。

这是为什么呢?可以这样理解:初始化的dp

数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可以在什么也不装的状态下被 “恰好装满” ,此时背包价值为0。其他容量的背包均没有合法的解,属于未定义的状态,所以都应该被赋值为 −∞

当前的合法解,一定是从之前的合法状态推得的

如果背包并非必须被装满,那么任何容量的背包都有一个合法解 “什么也不装”,这个解的价值为0,所以初始化时状态的值也就全部为0了。

下面就是实现的问题了

题目链接  hihocoder1038

代码实现

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
const int maxn=1e5+7;
using namespace std;
int n,V;
int w[maxn],v[maxn],dp[507][maxn];
int main(){
    scanf("%d%d",&n,&V);
    for(int i=1;i<=n;i++){
        scanf("%d%d",&v[i],&w[i]);
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=V;j++){
            if(j<v[i])dp[i][j]=dp[i-1][j];
            else{
                dp[i][j]=max(dp[i-1][j-v[i]]+w[i],dp[i-1][j]);
            }
        }
    }
    printf("%d",dp[n][V]);
}

空间优化

时间复杂度(Vn)就这样了   然后是对空间复杂度的优化  用了一个二维数组 dp

其实可以不用二维数组 用一个一维数组作为滚动数组就可以了

我们观察上面解法的状态转移方程

for(int i=1;i<=n;i++){
        for(int j=1;j<=V;j++){
            if(j<v[i])dp[i][j]=dp[i-1][j];
            else{
                dp[i][j]=max(dp[i-1][j-v[i]]+w[i],dp[i-1][j]);
            }
        }
    }

发现 对于dp这个二维数组  第 i 行 是由第 i-1 行推出来的  并且 得到第 i 行后 第 i-1 行已经没用了

所以 我们考虑 用一个一维数组 dp[ j ]来滚动表示上面那个二维数组

当 i 等于1 时  dp[ j ]表示 面对第一个物品 容量为 j 时的背包最大价值

然后当 i 等于2时  我们用刚才的dp数组更新计算出  面对第二个物品 容量为 j 时的背包最大价值

以此类推  由此 就优化了空间复杂度 由o(Vn)->o(V)

代码如下

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
const int maxn=1e5+7;
using namespace std;
int n,V;
int w[maxn],v[maxn],dp[maxn];
int main(){
    scanf("%d%d",&n,&V);
    for(int i=1;i<=n;i++){
        scanf("%d%d",&v[i],&w[i]);
    }
    for(int i=1;i<=n;i++){
        for(int j=V;j>=v[i];j--){
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
        }
    }

    printf("%d",dp[V]);
}

 

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1900_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值