好学易懂 从零开始的插头DP(一)

好学易懂 从零开始的插头DP(一)

写在前面

这是一篇,以蒟蒻视角展开的梳理总结。更改了一些顺序,变化了一些细节。方便蒟蒻学习理解(起码本蒟蒻是这样)。大佬们可以直接看其它大佬的博客,可以学的更快。

你必须要学会的前置知识:状态压缩DP
学不会依旧可以读,但是推荐学的前置知识:哈希

论文贡前面,建议读完博客再看。
《基于连通性状态压缩的动态规划问题》

什么是插头DP

很显然,是一个关于插头的动态规划。那么,什么是插头呢?

如图我们在一个方格内,关于格点画一条闭合回路。

对于每一个方格,内部,有六种情况
在这里插入图片描述
不难发现,对于回路里的任何一个方格,四条边中,有且仅有两个与表示路径的蓝色线相交。这也很好理解,进一次,出一次,C(4,2)=6。
我们现在把格子里的蓝色线条,变成从格子中心指向外边的→。

这个箭头,也就是所谓的插头。

例题

我们结合一个例题来看,这个题目是洛谷模板题的弱化版,很多博客放在了模板题后的第一题,结合个人经历我觉得它比模板题更适合作第一题。
题目链接:HDU1693 or 洛谷P5074
题目大意:给出n*m的方格,有些格子不能铺线,其它格子必须铺,可以形成多个闭合回路。问有多少种铺法?(1<=n,m<=12)

那么,把回路模型变成插头模型有什么好处或者性质呢?
1:首先,我们可以发现,如果一个格子上方的格子有下插头,那这个格子一定有上插头。其它方向类似。
2:按1的方法设置插头,最后一定会构成回路。
3:一个格子的合理取法合且仅合相邻的格子有关。

观察下第三点,它其实代表了无后效性。假设我们从上到下,从左到右的处理每一个格子,那么我们只需要记录部分格子的状态即可,再往上的格子具体状态不用知道。
在这里插入图片描述

如上图,对于当前格子,我们只需要知道红色的这些格子就行了,再上面的格子具体的取法,已经不会对下面任何未处理的格子产生影响。

已经掌握了状态压缩的你,一定能轻松的算出状态总数,每个格子6种,维护n个格子。总共 6 n 6^n 6n种状态,好的,完蛋,只有2e9个状态。
在这里插入图片描述
别急,我们真的需要2e9个状态嘛?这些格子里,指向彼此和已经处理过的格子的插头,显然是废物信息。我们实际上只需要知道这些插头嘛:
在这里插入图片描述
蓝色的是其它格子需要用到的,黄色的是当前格子需要用到的。我们叫红色的这个线为轮廓线。我们只需要知道这轮廓线上m+1个箭头是否存在就可以了。总共 2 m ∗ 2 2^m*2 2m2个状态。再乘上n和m,时空复杂度都绰绰有余。
那么,怎么实现呢?我们要解决两个问题。

1:已知这些插头的情况下,这个方格该如何填。
2:填完这个方格后,如何得到下一个方格所需要的插头状态,更特殊的,如何从上一行行末,变到下一行行初。

这两个问题,其实都不是很难,稍微思考下,都可以独立解答,建议思考后再往下看。图片挡下文大法。
在这里插入图片描述
问题1:
0:若这个格子不能走,则不能存在左侧和上方插头。

1:如果当前格子存在左侧插头和上方插头,那么只有一种合理填法。
在这里插入图片描述
2:如果仅存在左侧插头,那么有两种合理填法。

在这里插入图片描述
3:如果仅存在上方插头,那和上一种类似,也是两种填法。
在这里插入图片描述
在这里插入图片描述
4:如果都不存在呢?只有一种填法
在这里插入图片描述
问题2:
解答了问题1,显然我们也得到了问题2的解答,毕竟我们填出了这个格子,自然知道插头分布。唯一特殊的是上一行末到这一行头的处理。上一行末不可能有右插头,那我们直接把上一行末状态的表示最后是否存在右插头的位置去掉,再添加一个表示没有左插头的位,不就表示出了这一行第一个的状态了嘛,为了方便写,下方的代码里,我用dp[i][0][mask]表示转移后的上一行行末状态。
在这里插入图片描述
到这里,我们已经得到了解法了,成熟的评测机,应该自动AC了吧(划去)。插头DP还是要多写的,千万自己写一遍,别忘了,这只是模板题的弱化。
这里提供一份代码(洛谷AC)

#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
int n,m,maxk,a[13][13];
long long dp[13][13][1<<14];
void init()
{ 
	scanf("%d%d",&n,&m);
	maxk=(1<<(m+1))-1;
	for (int i=1;i<=n;i++)
	{
		for (int j=1;j<=m;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}
	memset(dp,0,sizeof(dp));
}
void solve()
{
	int prei,prej;
	dp[0][m][0]=1;
	for (int i=1;i<=n;i++)
	{
		for (int k=0;k<=maxk;k++)
		{
			dp[i][0][k<<1]=dp[i-1][m][k];
		}
		for (int j=1;j<=m;j++)
		{
			prei=i;
			prej=j-1;
			for (int k=0;k<=maxk;k++)
			{
				int b1=(k>>(j-1))&1;
				int b2=(k>>j)&1;
				if (!a[i][j])
				{
					if (!b1&&!b2) dp[i][j][k]+=dp[prei][prej][k];
				}
				else if (!b1&&!b2)
				{
					dp[i][j][k+(1<<j)+(1<<(j-1))]+=dp[prei][prej][k];
				}
				else if (b1&&!b2)
				{
					dp[i][j][k]+=dp[prei][prej][k];
					dp[i][j][k+(1<<(j-1))]+=dp[prei][prej][k];
				}
				else if (!b1&&b2)
				{
					dp[i][j][k]+=dp[prei][prej][k];
					dp[i][j][k-(1<<(j-1))]+=dp[prei][prej][k];
				}
				else if (b1&&b2)
				{
					dp[i][j][k-(1<<j)-(1<<(j-1))]+=dp[prei][prej][k];
				}
			}
		}
	}
	printf("%lld\n",dp[n][m][0]);
}
int main()
{
	int t;
	scanf("%d",&t);
	while (t--)
	{
		init();
		solve();
	}
	return 0;
}

到这里,插头DP算是入门了一半了,下一篇博客,将会介绍模板题和一系列的简单应用。这道题目里的状态是二进制状态压缩,下面的题目则不然,敬请期待。想必,多半,大概,也许,可能,能日更吧。

パソコンの前のこの努力しているかっこいい姿は誰ですか。そう 私 です
  • 8
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值