这篇文章提出了一种叫做activation motion compensation(AMC)的算法,类似于motion estimation的方式,运用上下帧之间的相似度来减少一些重复的计算,或者说是估计发生移动的物体的位置。
这篇文章不仅提出了软件层的算法,同时也co-design了一个能够有效运行该算法的硬件,但是这篇博客只讨论AMC算法。
说到底,该算法就是两个主要思想的结合体:1. 利用帧之间的temporal redundancy;2. 通过incremental approximation近似CNN的结果。即,AMC捕捉到input stream中的motion并且把它施加在保存好的CNN的activations中,来近似得到物体新的位置。
具体的实现思想非常简单,如下图所示。将CNN拆分成前后两个部分:prefix和suffix。挑选出一些key frames完整的经过CNN得到输出和predictions。随后的一些帧被定义为predicted frames,这些帧都不经过完整的CNN网络,通过使用key frame经过prefix得到的activations以及motion estimation得到的运动信息,整合出估计的activations(代替predicted frames经过prefix得到的activations)放进CNN的suffix得到detection的结果。
在获得