EVA2: Exploiting Temporal Redundancy in Live Computer Vision

本文介绍EVA2系统中的AMC算法,通过帧间时间冗余减少计算,预测物体移动。AMC结合temporal redundancy与incremental approximation,利用key frames和predicted frames来估算物体新位置。此外,文章提出RFBMM用于高效运动估计,自适应选择key frame以应对图像抖动。
摘要由CSDN通过智能技术生成

这篇文章提出了一种叫做activation motion compensation(AMC)的算法,类似于motion estimation的方式,运用上下帧之间的相似度来减少一些重复的计算,或者说是估计发生移动的物体的位置。

这篇文章不仅提出了软件层的算法,同时也co-design了一个能够有效运行该算法的硬件,但是这篇博客只讨论AMC算法。

说到底,该算法就是两个主要思想的结合体:1. 利用帧之间的temporal redundancy;2. 通过incremental approximation近似CNN的结果。即,AMC捕捉到input stream中的motion并且把它施加在保存好的CNN的activations中,来近似得到物体新的位置。

具体的实现思想非常简单,如下图所示。将CNN拆分成前后两个部分:prefix和suffix。挑选出一些key frames完整的经过CNN得到输出和predictions。随后的一些帧被定义为predicted frames,这些帧都不经过完整的CNN网络,通过使用key frame经过prefix得到的activations以及motion estimation得到的运动信息,整合出估计的activations(代替predicted frames经过prefix得到的activations)放进CNN的suffix得到detection的结果。

在获得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值