ACM图论专题-Telephone Lines

Telephone Lines

题目大意

给定有n个点,m条边的无向图
你要从1号点走到n号点,在此过程中,你可以忽略k次路程的距离(可以比k小)
问剩下路程中最长路段的最小值是多少

解法

最大值最小,显然可以用二分套最短路解决,但是这里我们基于dp思想,用一个dp数组记录在某个节点 i 忽略 j 次后所得到的最小的最大值

代码如下:

#include <bits/stdc++.h>
using namespace std;
const int M = 200010;
const int N = 1010;
struct node1
{
    int to, next;
    int dist;
};

int dist[N][N];
struct node2
{
    int to, level;
    bool friend operator<(node2 a, node2 b)
    {
        return dist[a.to][a.level] > dist[b.to][b.level];
    }
};
bool vis[N][N];
int n, m, k, cnt;
int head[N];
node1 edge[M];

void add(int come, int to, int val)
{
    cnt++;
    edge[cnt].next = head[come];
    edge[cnt].to = to;
    edge[cnt].dist = val;
    head[come] = cnt;
}

void spfa() // 1-->n
{
    priority_queue<node2> q;
    q.push(node2{1, 0});
    vis[1][0] = true;
    dist[1][0] = 0;

    while (!q.empty())
    {
        int u = q.top().to;
        int l = q.top().level;
        q.pop();
        vis[u][l] = false;
        for (int i = head[u]; i; i = edge[i].next)
        {
            int v = edge[i].to;
            //printf("%d->%d\n", u, v);
            if (dist[v][l] > max(dist[u][l], edge[i].dist))
            {
                dist[v][l] = max(dist[u][l], edge[i].dist);
                if (vis[v][l] == false)
                {
                    q.push(node2{v, l});
                    vis[v][l] = true;
                }
            }

            if (min(edge[i].dist, dist[v][l + 1]) > dist[u][l] && l < k)
            {
                dist[v][l + 1] = dist[u][l];
                if (vis[v][l + 1] == false)
                {
                    q.push(node2{v, l + 1});
                    vis[v][l + 1] = true;
                }
            }
        }
    }
}

int main()
{
    scanf("%d%d%d", &n, &m, &k);
    for (int i = 1, u, v, w; i <= m; i++)
    {
        scanf("%d%d%d", &u, &v, &w);
        add(u, v, w);
        add(v, u, w);
    }

    memset(dist, 0x7f, sizeof(dist));

    spfa();

    int ans = 0x7f7f7f7f;
    for (int i = 0; i <= k; i++)
        ans = min(ans, dist[n][i]);
    printf("%d", (ans!=0x7f7f7f7f)?(ans):(-1));
    return 0;
}
/*
5 7 0
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

2 2 2
1 1 1
1 2 1

*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值