题目大意
给出一个图的边的关系,其用节点名字和距离描述
边为双向边
求出该图的一个最小生成树,并且满足1号节点的度数不大于给定的值
解法
首先要去除掉1号节点后用kruskal算法求得其余节点的最小生成森林
注意,若此时森林数量大于了给定的1号节点最大度数,那么肯定没有解
然后再将1号节点加入,再次使用kruskal算法,得到1号节点度数最小的一棵生成树(注意,不一定是最小的)
考虑其余从1号点出发的边,其是否能够将优化路径权值,如果有多个可优化的值,我们应该选择比重最大的那一个,并且对当前添加的边添加路径标记,去除的边撤销路径标记
这样重复,直到1号节点的度数满足要求或者找不到这样的边,就得到了题目要求的最小生成树
代码如下:
#include <bits/stdc++.h>
using namespace std;
map<string,int> name;
int mp[30][30]; //记录边信息
int connect[30][30];//记录生成树的边连接情况
int vis[30]; //dfs寻找最大优化项的时候标记用
int fa[30];
int n,k,cnt,ans,use; //use记录1号节点已经使用的边的数量
void init() //对于必要的数组进行初始化
{
name["Park"]=1;
cnt=1;
memset(connect,0x0,sizeof(connect));
memset(mp,0x3f,sizeof(mp));
mp[0][0]=0;
for(int i=1; i<=29; i++)
mp[i][i]=0,fa[i]=i,connect[i][i]=1;
}
int find(int x)
{
return (fa[x]==x)?(fa[x]):(fa[x]=find(fa[x]));
}
void kruskal(int l,int r) //最小生成树,生成从l~r节点之间的森林
{
priority_queue<pair<int,pair<int,int> > > q;
for(int i=l; i<=r; i++)
for(int j=i+1; j<=r; j++)
q.push(make_pair(-mp[i][j],make_pair(i,j)));
int x,y,w,fx,fy;
while(!q.empty())
{
w=-q.top().first;
x=q.top().second.first,y=q.top().second.second;
q.pop();
fx=find(x),fy=find(y);
if(fx==fy)
continue;
fa[fx]=fa[fy];
ans+=w;
connect[x][y]=connect[y][x]=1;
if(x==1 || y==1) //如果是从1号节点出发的边,那么需要use++
use++;
}
}
pair<int,int> dfs_max(int u) //递归寻找以当前节点u为起点的权值最大的边
{
vis[u]=true;
pair<int,int> edge1=make_pair(0,0);
if(connect[1][u]) //如过当前点和1号节点相连了,那么其之前路径上的最大值是可以保留记录的
return edge1=make_pair(1,u);
pair<int,int> edge2;
for(int v=2; v<=cnt; v++)
{
if(connect[u][v]==0 || vis[v])
continue;
edge2=dfs_max(v);
if(edge2.first==0) //如果后续点不符合要求
continue;
if(mp[u][v] > mp[edge1.first][edge1.second])
edge1=make_pair(u,v);
if(mp[edge2.first][edge2.second] > mp[edge1.first][edge1.second])
edge1=edge2;
}
return edge1;
}
void release() //不断松弛边,执行一次,会松弛当前生成树一次
{
pair<int,int> edge1,edge2;
edge1=make_pair(0,0);
int id=1;
for(int i=2; i<=cnt; i++) //枚举1号点引出的每一条边
{
if(connect[1][i])
continue;
memset(vis,0x0,sizeof(vis));
edge2 = dfs_max(i);
if(mp[edge2.first][edge2.second]-mp[1][i] > mp[edge1.first][edge1.second]-mp[1][id])
edge1=edge2,id=i;
}
ans=ans-mp[edge1.first][edge1.second]+mp[1][id];
connect[edge1.second][edge1.first]=connect[edge1.first][edge1.second]=0;
connect[id][1]=connect[1][id]=1;
}
int main()
{
init();
scanf("%d",&n);
string s1,s2;
for(int i=1,dist; i<=n; i++)
{
cin>>s1>>s2>>dist;
if(!name[s1]) name[s1]=++cnt;
if(!name[s2]) name[s2]=++cnt;
mp[name[s1]][name[s2]]=mp[name[s2]][name[s1]]=min(mp[name[s1]][name[s2]],dist);
}
scanf("%d",&k);
kruskal(2,cnt);
kruskal(1,cnt);
for(int i=use+1; i<=min(k,cnt); i++)
release();
printf("Total miles driven: %d\n",ans);
return 0;
}