ACM图论专题-最优比率生成树

ACM图论专题-最优比率生成树

题目大意

给你很多点,两点之间包含收益值和成本值,你要找到一颗生成树,使得其各边的收益值和成本值得比值最大

解法

这是一道典型的0/1分数规划问题
我们有
∑ i = 1 n v a l [ i ] ∑ i = 1 n c o s t [ i ] ≥ k \frac{\sum^n_{i=1}val[i]}{\sum^n_{i=1}cost[i]}\geq k i=1ncost[i]i=1nval[i]k
那么上述式子化简后其实可以是
∑ i = 1 n v a l [ i ] − k ∗ c o s t [ i ] ≥ 0 \sum^n_{i=1}{val[i]-k*cost[i]}\geq 0 i=1nval[i]kcost[i]0
那么我们就可以而二分这个k,然后做一次生成树来判断最终累加的和是否大于等于0来判断其是否合法
代码如下

#include <bits/stdc++.h>
using namespace std;
const double eps=1e-5;
struct Point
{
    int x,y,z;
};
struct node
{
    int x,y;
    double w;
    bool friend operator < (node a,node b)
    {
        return a.w<b.w;
    }
};
node q[5000010];
Point point[1010];
double dist[1010][1010];
int high[1010][1010];
double mp[1010][1010];
int fa[1010],n;

inline double getdist(const Point &a,const Point &b)
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}

inline double gethigh(const Point &a,const Point &b)
{
    return abs(a.z-b.z)*1.0;
}

int find(int x)
{
    return (x==fa[x])?(x):(fa[x]=find(fa[x]));
}

inline void init()
{
    for(int i=1; i<=n; i++)
        for(int j=i+1; j<=n; j++)
            dist[i][j]=getdist(point[i],point[j]),
                high[i][j]=gethigh(point[i],point[j]);
}

inline void build(const double mid)
{
    for(int i=1; i<=n; i++)
        fa[i]=i;
    for(int i=1; i<=n; i++)
        for(int j=i+1; j<=n; j++)
            mp[i][j]=mp[j][i]=high[i][j]-mid*dist[i][j];
}

inline bool check()
{
    double flag=0;
    int cnt=0;
    for(int i=1; i<=n; i++)
        for(int j=i+1; j<=n; j++)
        {
            q[++cnt]=node{i,j,mp[i][j]};
        }
    sort(q+1,q+cnt+1);
    int x,y;
    double w;
    for(int i=1;i<=cnt;i++)
    {
        x=q[i].x;
        y=q[i].y;
        w=q[i].w;
        x=find(x);
        y=find(y);
        if(x==y)
            continue;
        fa[x]=fa[y];
        flag+=w;
    }
    return flag>=0;
}

int main()
{
    while(true)
    {
        scanf("%d",&n);
        if(n==0)
            break;
        for(int i=1; i<=n; i++)
            scanf("%d%d%d",&point[i].x,&point[i].y,&point[i].z);

        init();

        double l=0,r=1e5;
        double mid;
        while(r-l>eps)
        {
            mid=(l+r)/2.0;
            build(mid);
            if(check())
                l=mid;
            else
                r=mid;
        }
        printf("%.3f\n",(l+r)/2.0);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值