亮灯数目-质因数分解 约数定理

12 篇文章 0 订阅
11 篇文章 0 订阅

//

//现在有编号为1~n的灯初始状态是全开着的,

//现进行如下操作:

//编号是1的倍数的灯拨一下开关;

//编号是2的倍数的灯再拨一下开关;

//编号是3的倍数的灯再拨一下开关;

//…………

//如此直到n的倍数。

//问:此时还有多少盏灯仍然是开着的

常规解法:

(1)数组n个位置标识灯的状态 然后按操作一次次更新灯的状态;最后数组里统计

(2)分析下 n的倍数肯定是要比n大的,所以操作n倍数的时候 1~n-1的灯状态是不会再变化了 即f(n-1) 值固定了

只要再运算下第n灯 n次操作后是否开的;  f(n)=f(n-1) + (第n灯开?1:0) 

//递归写法简单
//可性能差  只适合小数
#include <iostream>
using namespace std;

int getLampOnNumber(int n)
{
    if (n == 1) {
        return 0;
    }
    int iCount = 1; //初始开 1
    for (int i=1; i<=n; i++) {
        if (n % i == 0) {
            iCount++;
        }
    }
    return getLampOnNumber(n-1)+(iCount%2);
}

int main()
{
    int n;
    cin >> n ;
    cout << getLampOnNumber(n) << endl;
    return 0;
}


 

//递推比递归性能快
//可性能还是很差  只适合小数
#include <iostream>
using namespace std;

int getLampOnNumber(int n)
{
    int s = 0;//亮灯总数
    for(int i=1;i<=n;i++)
    {
        int iCount = 0;//初始开为1 但全部为1的倍数 所以初始化为关0 循环即可从2开始
        for (int j=2; j<=i; j++) {
            if (i % j == 0) {
                iCount++;
            }
        }
        s += (iCount%2);
    }
    return s;
}

int main()
{
    int n;
    cin >> n ;
    cout << getLampOnNumber(n) << endl;
    return 0;
}

(3)在 f(n)=f(n-1) + (第n灯开?1:0)基础上可在判断第n灯的状态代码再优化;操作上可知 第n灯只有到n的约数时候 第n灯才会被操作,因此问题可转为求 n 的约数个数

// 初始开 n的约数个数为偶数 开
// 奇数 关
// 一个整数的约数总是成对出现的
// 只有完全平方数的约数是奇数例如16 约数 1 16 2 8 4 
#include <iostream>
#include "time.h"
#include <cmath>
using namespace std;
int main()
{
    int n;
    cin >> n ;
    cout << n-(int)sqrt(n) << endl;
    //cout << getLampOnNumber(n) << endl;
    
    return 0;
}

//约数个数 函数

int getDivisorNum(int n)
{
	if( n < 1)
			return 0;
	//vector<int> vDivisor;
	int s = 1;
	int num = (int)sqrt(n);
	for(int i=2;i<=num;i++)
	{
		int iCount = 1;
		while(n%i == 0)
		{
			iCount++;
			n /= i;
		}
		s *= iCount;
	}
	if( n > 1 )
		s *= 2;
	return s;	
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值