-
总时间限制:
- 1000ms 内存限制:
- 65536kB
-
描述
-
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
- 输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N 2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。 输出
- 输出最大子矩阵的大小。 样例输入
-
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
样例输出
-
15
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int num=-0x3f3f3f3f,map[102][102],n,f[1002];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&map[i][j]);
for(int i=1;i<=n;i++){
memset(f,0,sizeof(f));
for(int k=i;k<=n;k++){
for(int j=1;j<=n;j++)
f[j]+=map[k][j];
int maxn=f[1],ans=f[1];
for(int j=2;j<=n;j++){
if(maxn<0) maxn=f[j];
else maxn+=f[j];
ans=max(maxn,ans);
}
num=max(ans,num);
}
}
printf("%d\n",num);
}