K近邻算法(KNN):只涉及距离计算,适合小白入门。

这篇博客详细介绍了K近邻算法的基础知识,包括算法简介、工作原理、实现思路,以及如何自定义和使用sklearn中的KNN。适合初学者,内容涵盖KNN的实例计算和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇博客介绍K近邻算法:没有涉及到KD树等复杂逻辑,只涉及距离计算,适合小白入门,博客结合文本和代码更容易理解。文末会放上全部代码,方便大家一起学习。

本篇博客有自己手写的KNN,也有介绍如何使用sklearn中的KNN

如果有朋友想要了解KD树,可以看我另一篇关于KNN的博客。链接:https://blog.csdn.net/hongguihuang/article/details/104417825

1 K近邻算法简介

K近邻法是一种基本分类与回归方法。

K近邻法的输入为实例的特征向量(特征空间的点),输出为实例的类别,可以取多类。

2 K近邻算法

在这里插入图片描述
用自己的话说就是:
①给定一个训练数据集,训练数据集实例的类别已定。
②对新的输入实例,找出新实例K个最近邻的训练点,根据K个最近邻训练实例的类别,通过多数表决等方式进行预测。

3 思路

  • 1.计算预测点到到每个样本的距离(采用欧氏距离)
  • 2距离索引值按升序排序
  • 3.取K个距离最小的Y
  • 4.统计K个距离最小值中同一类最多的数

导入包

import numpy as np
import sklearn import datasets
from collection import Counter

1.计算测试点到样本的距离

distances = [sqrt(sum((x_train - x)**2)) for x_train in X_train]

2.距离按升序排列

nearest = np.argsort(distances)

3.取前K个距离的y值

topk_y = [y_train[i] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值