康谋分享 | 在基于场景的AD/ADAS验证过程中,识别挑战性场景!

基于场景的验证是AD/ADAS(自动驾驶和高级驾驶辅助)系统开发过程中的重要步骤,它包括对自动化系统进行一系列预定义场景的测试。测试中包含的场景越多,尤其挑战性场景越多,人们对正在测试的AD/ADAS系统的信心就越高。


目录

一、现有问题

二、康谋方案

1、识别具有挑战性场景的方法

2、道路施工挑战性场景案例

三、结论


一、现有问题

真实世界驾驶记录是挑战性场景的重要来源,但这一过程往往成本高昂且繁琐。大多数情况下,真实世界驾驶记录中包含许多“空驶里程”,即没有任何值得关注的事情发生的里程(例如车辆在空旷的道路上直线行驶且天气条件完美)。“空驶里程”对AD/ADAS系统的验证贡献微乎其微,一支小型的测试车队就能轻松产生PB级的数据。

在面对巨量数据时,人们通常需要思考几个问题

  • 这些数据中有多少是相关的?
  • 车辆在没有周围车辆的情况下行驶了多长时间?
  • 工程师是否需要手动逐个检查所有不相关和无风险的场景?
  • 工程师是否应该完全依赖操作人员(在驾驶过程中)标注相关场景,而忽略其他所有内容?

为了解决以上问题,我们发现能够自动从真实世界驾驶记录中识别挑战性场景是十分重要的。这可以减少存储在“热存储”(如AWS S3)中的数据量,因为人们可以决定只将相关且具有挑战性的场景存储在“热存储”中,而将剩余数据存储在“冷存储”࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值