T3
思路:
二分答案 mid
找到一个串的所有长度小于 mid 子序列
发现一个性质
一个串的不同子序列个数大于 n,那么一定有匹配
所以一个串搜出 n 个子序列后就不用搜了
对于每个串和子序列建点,每个串向它包含的子序列连边,二分图匹配即可
搜索要优化剪枝
代码:
#include <bits/stdc++.h>
#include <tr1/unordered_map>
#include <tr1/unordered_set>
using namespace std;
typedef unsigned long long ull;
#define re register
namespace IO {
inline char ch() {
static char buf[1 << 21], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2)
? EOF
: *p1++;
}
inline int in() {
int s = 0, f = 1;
char x;
for (x = getchar(); x < '0' || x > '9'; x = getchar())
if (x == '-') f = -1;
for (; x >= '0' && x <= '9'; x = getchar()) s = (s * 10) + (x & 15);
return f == 1 ? s : -s;
}
} // namespace IO
using namespace IO;
const int A = 500;
const int P = 37;
const int N = 5e5 + 5;
const int INF = 1e9;
int n;
char nm[A][A];
int len[A];
int tot, cor;
int head[N], cur[N], tot_road = 1;
struct Road {
int nex, to, fw;
} road[2 * N];
inline void edge(int x, int y, int w) {
road[++tot_road] = {head[x], y, w};
head[x] = tot_road;
road[++tot_road] = {head[y], x, 0};
head[y] = tot_road;
return;
}
tr1::unordered_map<ull, int> t;
tr1::unordered_set<ull> rep;
int st[N], top;
inline void find(int now, int x, ull val, int num) {
if (top > n) return;
if (!num) return;
for (re int i = x + 1; i <= len[now]; ++i) {
ull w = val * P + (nm[now][i] - 'a' + 1);
if (rep.find(w) == rep.end()) {
st[++top] = w;
rep.insert(w);
find(now, i, w, num - 1);
}
}
return;
}
#define S 0
#define T n + tot + 1
inline void build(int k) {
for (re int i = 1; i <= n; ++i) {
rep.clear();
top = 0;
find(i, 0, 0, k);
if (top > n) {
cor++;
continue;
}
for (re int j = 1; j <= top; ++j) {
ull val = st[j];
if (t.find(val) == t.end()) t[val] = ++tot;
edge(i, n + t[val], INF);
}
}
for (re int i = 1; i <= n; ++i) edge(S, i, 1);
for (re int i = 1; i <= tot; ++i) edge(n + i, T, 1);
return;
}
int maxflow = 0;
int dep[N], sum[N];
inline void BFS() {
for (re int i = S; i <= T; ++i) dep[i] = -1, sum[i] = 0;
queue<int> q;
dep[T] = 0, sum[dep[T]]++;
q.push(T);
while (!q.empty()) {
int x = q.front();
q.pop();
for (re int y = head[x]; y; y = road[y].nex) {
int z = road[y].to;
if (dep[z] != -1) continue;
dep[z] = dep[x] + 1, sum[dep[z]]++;
q.push(z);
}
}
return;
}
inline int DFS(int x, int flow) {
if (x == T) {
maxflow += flow;
return flow;
}
int used = 0;
for (re int &y = cur[x]; y; y = road[y].nex) {
int z = road[y].to, w = road[y].fw;
if (w && dep[z] == dep[x] - 1) {
int after = DFS(z, min(w, flow - used));
if (after) {
used += flow;
road[y].fw -= after;
road[y ^ 1].fw += after;
}
}
if (used == flow) return used;
}
if (!--sum[dep[x]]) dep[T] = n + 1;
sum[++dep[x]]++;
return used;
}
inline void ISAP() {
maxflow = 0;
BFS();
while (dep[T] <= n) {
for (int i = S; i <= T; i++) cur[i] = head[i];
DFS(S, INF);
}
return;
}
inline void clean() {
t.clear();
for (re int i = S; i <= T; ++i) head[i] = 0;
tot = cor = 0;
tot_road = 1;
return;
}
inline int check(int k) {
clean();
build(k);
ISAP();
if (maxflow == n - cor) return 1;
return 0;
}
signed main() {
n = in();
for (re int i = 1; i <= n; ++i) {
scanf("%s", nm[i] + 1);
len[i] = strlen(nm[i] + 1);
}
int L = 1, R = 300, ans = -1;
while (L <= R) {
int mid = (L + R) >> 1;
if (check(mid))
R = mid - 1, ans = mid;
else
L = mid + 1;
}
printf("%d\n", ans);
return 0;
}