LeetCode-169. 求众数

https://leetcode-cn.com/problems/majority-element/

给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在众数。

示例 1:

输入: [3,2,3]
输出: 3
示例 2:

输入: [2,2,1,1,1,2,2]
输出: 2


参考:https://leetcode-cn.com/problems/majority-element/solution/qiu-zhong-shu-by-leetcode-2/

暴力法

	public int majorityElement(int[] nums) {
		int mCount = nums.length / 2;
		for (int num : nums) {
			int count = 0;
			for (int elem : nums) {
				if (num == elem) {
					count++;
				}
			}
			if (count > mCount) {
				return num;
			}
		}
		return -1;
	}

时间复杂度:O(n^2)
空间复杂度:O(1)O(1)

在这里插入图片描述

哈希

    public int majorityElement(int[] nums) {
		int mCount = nums.length / 2;
		Map<Integer, Integer> map = new HashMap<Integer, Integer>();
		for (int num : nums) {
			if (!map.containsKey(num)) {
				map.put(num, 1);
			} else {
				map.put(num, map.get(num) + 1);
			}
		}
		for (int elem : nums) {
			int count = map.get(elem);
			if (count > mCount) {
				return elem;
			}
		}
		return -1;
	}

可以对上面的代码简化下:

	public int majorityElement(int[] nums) {
		int mCount = nums.length / 2;
		Map<Integer, Integer> map = new HashMap<Integer, Integer>();
		for (int num : nums) {
			int count = map.getOrDefault(num, 0) + 1;
			map.put(num, count);
			if(count > mCount) {
				return num;
			}
		}
		return -1;
	}

在这里插入图片描述

时间复杂度:O(n)

空间复杂度:O(n)

摩尔投票法

/**
	 * 如果我们把众数记为 +1 ,把其他数记为 -1 , 将它们全部加起来,显然和大于 0 ,从结果本身我们可以看出众数比其他数多。
	 */
	public int majorityElement(int[] nums) {
		int count = 0;
		Integer candidate = null;
		for (int num : nums) {
			if (count == 0) {// 之前选择的众数并不是真正的众数,重新设置众数
				candidate = num;
			}
			count += (num == candidate) ? 1 : -1;// 是众数,众数的个数+1,否则就-1
		}
		return candidate;
	}

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值