一、相关概念
1.函数的概念
一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个(任意性)元素x,在集合B中都有(存在性)唯一(唯一性)的元素y和它对应,这样的对应叫做集合A到集合B的一个函数(三性缺一不可)
函数的本质:建立在两个非空数集上的特殊对应
这种“特殊对应”有何特点:1).可以是“一对一” 2).可以是“多对一” 3).不能“一对多” 4). A中不能有剩余元素 5).B中可以有剩余元素
判断两个函数相同:只看定义域和对应法则
2.映射的概念
一般地,设A、B是两个集合,如果按某一个确定的对应关系f,使对于集合A中的每一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射(mapping)。
思考:映射与函数区别与联系?
函数——建立在两个非空数集上的特殊对应
映射——建立在两个非空集合上的特殊对应
1)函数是特殊的映射,是数集到数集的映射.
2)映射是函数概念的扩展,映射不一定是函数.
3)映射与函数都是特殊的对应
思考:映射有“三性”:
①“有序性”:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;
②“存在性”:对于集合A中的任何一个元素,集合B中都存在元素和它对应;
③“唯一性”:对于集合A中的任何一个元素,在集合B中和它对应的元素是唯一的.
3.用映射定义函数
(1).函数的定义:如果A、B都是非空数集,那末A到B的映射f:A → B就叫做A → B的函数。记作:y=f (x).
(2)定义域:原象集合A叫做函数y=f (x)的定义域。
(3)值域:象的集合C 叫做函数y=f(x)的值域。