第一章:函数与极限
初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。(这段话其实就是再告诉我们初等数学和高等数学的本质差别即研究对象的不同)在高等数学中,函数关系描述的是变量之间的依赖关系,而极限方法则是研究这些变动量的一种基本手段。本章将详细介绍映射、函数、极限以及函数的连续性等基本概念,并探讨它们的一些重要性质。
第一节:映射与函数
映射是现代数学中的一个基本概念,它为微积分中函数的研究提供了理论基础。本节将重点介绍映射和函数的基本概念,以及函数的性质与运算。
一、映射
1. 映射的概念
定义:设 X 和 Y 是两个非空集合。(先定义两个概念即两个非空集合) (疑问1:为什么是非空的?)若存在一个规则 𝑓(在做这一节例1的时候忘记了f是什么?),使得对于 X 中的每个元素 x,根据规则 𝑓f在 Y 中有唯一确定的元素 y 与之对应,那么称 𝑓 为从 X 到 Y 的映射,表示为:
𝑓:𝑋→𝑌
其中 y 称为元素 x 在映射 𝑓 下的像(这里在坐例1的时候忘记了什么是像导致),并记作 𝑓(𝑥),即:
𝑦=𝑓(𝑥)
(疑问2:为什么要定义映射的概念)
2024/6/16日补充
疑问一解答:
疑问1:为什么是非空的?
在定义映射时,要求 X 和 Y 是非空集合。原因如下:
-
存在性:映射的概念要求对于 X 中的每个元素 xxx,在 Y 中都有一个唯一的元素 yyy 与之对应。如果 X 是空集合,则没有元素 xxx,无法谈论映射。而如果 Y 是空集合,即使 X 有元素,也无法找到对应的元素 yyy。(学习到了以后定义的时候要仔细思考每一步定义概念的严谨性具体就是通过逻辑推演一步一步去实现)
-
实际应用:映射在数学和实际应用中常用于描述一个集合的元素如何转变为另一个集合中的元素。非空集合确保这种转换是有意义的。
我的理解:其实我们不妨把自己想象成一个数学家,现在我们要研究映射问题这就要考虑我们要如何定义这个映射了。
疑问二解答:
疑问2:为什么要定义映射的概念?
映射定义的具体动机和问题
-
表示变量之间的关系
- 数学家们希望通过函数的定义来清晰地表示一个变量如何依赖于另一个变量。这对于解析几何和微积分的研究尤为重要。
-
解决变化和运动的问题
- 在微积分中,函数的概念用于描述物体的运动和变化。这些问题在物理学和工程学中都有广泛的应用。
-
严格化数学分析
- 通过定义函数,数学家们可以更加严格和精确地研究极限、连续性、导数和积分等概念。这使得数学分析更加严谨和系统。
映射定义者的思考过程
- 概念抽象化:早期数学家们逐渐意识到,许多具体的数学问题可以通过抽象的变量和关系来表示。例如,欧拉和柯西的工作展示了如何通过抽象的函数来处理复杂的数学问题。
- 严格性和普适性:随着数学的发展,数学家们不断追求定义的严格性和普适性。狄利克雷在定义函数时特别注重它在不同数学分支中的应用,使得函数概念在分析学、代数学和几何学中都有广泛的应用。
- 形式化和符号化:使用 f(x)f(x)f(x) 这样的符号,使得函数的概念更加直观和易于操作。这种形式化的表示方法帮助数学家们更加系统地研究和应用函数。
元素 x 称为元素 y 在映射 𝑓 下的一个原像;(原像的概念忘记了在做例1的时候暴露了第三个问题了,从中亦可以反映出当前我的阅读数学水平不行,根据这次反馈我要对这个问题很感兴趣究竟什么影响你的阅读能力)集合 𝑋X 称为映射 𝑓f 的定义域,记作 Df,即 𝐷𝑓=𝑋Df=X;𝑋X 中所有元素的像所组成的集合称为映射 𝑓f 的值域,记作 Rf 或 f(X),即:
Rf=f(X)={f(x)∣x∈X}
映射的定义需要注意以下几点:
- 构成映射必须具备三个要素:定义域 𝑋X,值域的范围 𝑅𝑓⊆𝑌Rf⊆Y,对应法则 𝑓f 使得对每个 𝑥∈𝑋x∈X,有唯一确定的 𝑦=𝑓(𝑥)y=f(x) 与之对应。
- 对每个 𝑥∈𝑋x∈X,元素 𝑥x 的像 𝑦y 是唯一的;而对每个 𝑦∈𝑅𝑓y∈Rf,元素 𝑦y 的原像不一定是唯一的;映射 𝑓f 的值域 𝑅𝑓Rf 是 𝑌Y 的一个子集,不一定等于 𝑌Y。
例1:设 𝑓:𝑅→𝑅f:R→R,对每个 𝑥∈𝑅x∈R,𝑓(𝑥)=𝑥2f(x)=x2。此映射的定义域 𝐷𝑓=𝑅Df=R,值域 𝑅𝑓={𝑦∣𝑦≥0}Rf={y∣y≥0},它是 𝑅R 的一个真子集。对于 𝑅𝑓Rf 中的元素 𝑦y,除 𝑦=0y=0 外,它的原像不是唯一的,例如 𝑦=4y=4 的原像有 𝑥=2x=2 和 𝑥=−2x=−2。
例2:设 𝑋={(𝑥,𝑦)∣𝑥2+𝑦2=1}X={(x,y)∣x2+y2=1},𝑌={(𝑥,0)∣∣𝑥∣≤1}Y={(x,0)∣∣x∣≤1},映射 𝑓:𝑋→𝑌f:X→Y 对每个 (𝑥,𝑦)∈𝑋(x,y)∈X 有唯一确定的 (𝑥,0)∈𝑌(x,0)∈Y 与之对应。此映射的定义域 𝐷𝑓=𝑋Df=X,值域 𝑅𝑓=𝑌Rf=Y。在几何上,此映射表示将单位圆周上的点投影到 𝑥x 轴的区间 [−1,1][−1,1] 上。
例3:设 𝑓:[−2,2]→[−1,1]f:[−2,2]→[−1,1],对每个 𝑥∈[−2,2]x∈[−2,2],𝑓(𝑥)=sin(𝑥)f(x)=sin(x)。𝑓f 是一个映射,其定义域 𝐷𝑓=[−2,2]Df=[−2,2],值域 𝑅𝑓=[−1,1]Rf=[−1,1]。
若映射 𝑓f 的值域 𝑅𝑓Rf 等于 𝑌Y,即 𝑌Y 中任一元素 𝑦y 都是 𝑋X 中某元素的像,则称 𝑓f 为从 𝑋X 到 𝑌Y 上的满射;若对 𝑋X 中任意两个不同元素 𝑥1≠𝑥2x1=x2,它们的像 𝑓(𝑥1)≠𝑓(𝑥2)f(x1)=f(x2),则称 𝑓f 为从 𝑋X 到 𝑌Y 的单射;若映射 𝑓f 既是单射,又是满射,则称 𝑓f 为一一映射(或双射)。
二、逆映射与复合映射
2.1 逆映射
当一个映射 𝑓:𝑋→𝑌f:X→Y 是单射时,对每个 𝑦∈𝑅𝑓y∈Rf,都有唯一的 𝑥∈𝑋x∈X 满足 𝑓(𝑥)=𝑦f(x)=y。这样,我们可以定义一个从 𝑅𝑓Rf 到 𝑋X 的新映射 𝑔g,即:
𝑔:𝑅𝑓→𝑋g:Rf→X
对每个 𝑦∈𝑅𝑓y∈Rf,规定 𝑔(𝑦)=𝑥g(y)=x,其中 𝑥x 满足 𝑓(𝑥)=𝑦f(x)=y。这个映射 𝑔g 称为 𝑓f 的逆映射,记作 𝑓−1f−1,其定义域 𝐷𝑓−1=𝑅𝑓Df−1=Rf,值域 𝑅𝑓−1=𝑋Rf−1=X。
注意:只有当映射 𝑓f 是单射时,逆映射 𝑓−1f−1 才存在。例如,在前述例子中,只有例3的映射 𝑓:[−2,2]→[−1,1],𝑓(𝑥)=sin(𝑥)f:[−2,2]→[−1,1],f(x)=sin(x) 存在逆映射 𝑓−1f−1,这个逆映射就是反正弦函数的主值:
𝑓−1(𝑥)=arcsin(𝑥),𝑥∈[−1,1]f−1(x)=arcsin(x),x∈[−1,1]
逆映射的定义域 𝐷𝑓−1=[−1,1]Df−1=[−1,1],值域 𝑅𝑓−1=[−2,2]Rf−1=[−2,2]。
2.2 复合映射
设有两个映射:
𝑔:𝑋→𝑌1g:X→Y1 𝑓:𝑌2→𝑍f:Y2→Z
其中 𝑌1⊆𝑌2Y1⊆Y2,则可以定义一个从 𝑋X 到 𝑍Z 的复合映射,它将每个 𝑥∈𝑋x∈X 映射到 𝑓(𝑔(𝑥))∈𝑍f(g(x))∈Z。这个映射称为由 𝑔g 和 𝑓f 构成的复合映射,记作 𝑓∘𝑔f∘g,即:
𝑓∘𝑔:𝑋→𝑍,(𝑓∘𝑔)(𝑥)=𝑓(𝑔(𝑥)),𝑥∈𝑋f∘g:X→Z,(f∘g)(x)=f(g(x)),x∈X
复合映射的存在条件是 𝑔g 的值域 𝑅𝑔Rg 必须包含在 𝑓f 的定义域内,即 𝑅𝑔⊆𝐷𝑓Rg⊆Df。复合映射的顺序是有意义的,𝑓∘𝑔f∘g 的存在并不意味着 𝑔∘𝑓g∘f 也有意义。即使两者都有意义,它们也不一定相同。
例4:设有映射 𝑔:𝑅→[−1,1]g:R→[−1,1],对每个 𝑥∈𝑅x∈R,𝑔(𝑥)=sin(𝑥)g(x)=sin(x);映射 𝑓:[−1,1]→[0,1]f:[−1,1]→[0,1],对每个 𝑢∈[−1,1]u∈[−1,1],𝑓(𝑢)=1−𝑢2f(u)=1−u2。则映射 𝑔g 和 𝑓f 构成的复合映射:
𝑓∘𝑔:𝑅→[0,1],(𝑓∘𝑔)(𝑥)=𝑓(𝑔(𝑥))=1−sin2(𝑥)=∣cos(𝑥)∣f∘g:R→[0,1],(f∘g)(x)=f(g(x))=1−sin2(x)=∣cos(x)∣
这里,𝑓(𝑔(𝑥))=1−sin2(𝑥)=∣cos(𝑥)∣f(g(x))=1−sin2(x)=∣cos(x)∣ 是因为 1−sin2(𝑥)=cos2(𝑥)1−sin2(x)=cos2(x)。
二、函数
1. 函数的概念
定义:设数集 𝐷⊆𝑅D⊆R,则称映射 𝑓:𝐷→𝑅f:D→R 为定义在 𝐷D 上的函数,通常简记为:
𝑦=𝑓(𝑥),𝑥∈𝐷y=f(x),x∈D
其中,𝑥x 称为自变量,𝑦y 称为因变量,𝐷D 称为定义域,记作 𝐷𝑓Df,即 𝐷𝑓=𝐷Df=D。
在函数的定义中,对每个 𝑥∈𝐷x∈D,按对应法则 𝑓f,总有唯一确定的值 𝑦y 与之对应。这个值称为函数 𝑓f 在 𝑥x 处的函数值,记作 𝑓(𝑥)f(x),即 𝑦=𝑓(𝑥)y=f(x)。因变量 𝑦y 与自变量 𝑥x 之间的这种依赖关系,通常称为函数关系。函数值 𝑓(𝑥)f(x) 的全体所构成的集合称为函数 𝑓f 的值域,记作 𝑅𝑓Rf 或 𝑓(𝐷)f(D),即:
𝑅𝑓=𝑓(𝐷)={𝑦∣𝑦=𝑓(𝑥),𝑥∈𝐷}Rf=f(D)={y∣y=f(x),x∈D}
记号 𝑓f 和 𝑓(𝑥)f(x) 的含义有区别:前者表示自变量 𝑥x 和因变量 𝑦y 之间的对应法则,而后者表示与自变量 𝑥x 对应的函数值。通常使用 “𝑓(𝑥),𝑥∈𝐷f(x),x∈D” 或 “𝑦=𝑓(𝑥),𝑥∈𝐷y=f(x),x∈D” 来表示定义在 𝐷D 上的函数。
表示函数的记号可以任意选取,常用的除了 𝑓f 外,还可用其他英文字母或希腊字母,如 𝑔g,𝐹F,𝜙ϕ 等。相应地,函数可记作 𝑦=𝑔(𝑥)y=g(x),𝑦=𝐹(𝑥)y=F(x),𝑦=𝜙(𝑥)y=ϕ(x) 等。有时还直接用因变量的记号来表示函数,即 𝑦=𝑦(𝑥)y=y(x)。在讨论多个不同的函数时,需用不同的记号来表示它们以区分。
函数是从实数集到实数集的映射,其值域总在 𝑅R 内,因此构成函数的要素是定义域 𝐷D 及对应法则 𝑓f。如果两个函数的定义域和对应法则相同,则这两个函数是相同的;否则,它们是不同的。
函数的定义域通常按以下两种情形来确定:
- 对有实际背景的函数,根据实际背景中变量的实际意义确定。例如,在自由落体运动中,设物体下落的时间为 𝑡t,下落的距离为 𝑠s,则 𝑠s 与 𝑡t 之间的函数关系是 𝑠=2𝑡2s=2t2,定义域是区间 [0,𝑇][0,T]。
- 抽象地用算式表达的函数,通常约定这种函数的定义域是使得算式有意义的一切实数组成的集合,这种定义域称为函数的自然定义域。例如,函数 𝑦=1−𝑥2y=1−x2 的定义域是闭区间 [−1,1][−1,1]。
函数的主要表示方法有三种:表格法、图形法、解析法(公式法)。用图形法表示函数是基于函数图形的概念,即坐标平面上的点集 {𝑃(𝑥,𝑦)∣𝑦=𝑓(𝑥),𝑥∈𝐷}{P(x,y)∣y=f(x),x∈D} 称为函数 𝑦=𝑓(𝑥),𝑥∈𝐷y=f(x),x∈D 的图形。
下面通过几个例子来说明这些概念:
例5:常数函数 𝑦=2y=2,定义域 𝐷=(−∞,+∞)D=(−∞,+∞),值域 𝑊={2}W={2},其图形是一条平行于 𝑥x-轴的直线。
例6:绝对值函数 𝑦=∣𝑥∣y=∣x∣,定义域 𝐷=(−∞,+∞)D=(−∞,+∞),值域 𝑅𝑓=[0,+∞)Rf=[0,+∞),其图形如下所示,称为绝对值函数。
例7:符号函数 𝑦=sgn(𝑥)y=sgn(x),定义域 𝐷=(−∞,+∞)D=(−∞,+∞),值域 𝑅𝑓={−1,0,1}Rf={−1,0,1},其图形如下所示。对于任何实数 𝑥x,下列关系成立:𝑥=sgn(𝑥)⋅∣𝑥∣x=sgn(x)⋅∣x∣。
例8:取整函数 𝑦=⌊𝑥⌋y=⌊x⌋,定义域 𝐷=(−∞,+∞)D=(−∞,+∞),值域 𝑅𝑓=𝑍Rf=Z,其图形称为阶梯曲线,在 𝑥x 为整数值处,图形发生跳跃,跃度为 1。
2. 函数的几种特性
(1) 函数的有界性
函数的有界性关注于函数值的上限和下限。如果在函数 𝑓(𝑥)f(x) 的某个子集 𝑋⊆𝐷X⊆D 中,存在一个实数 𝐾1K1 使得对所有 𝑥∈𝑋x∈X,𝑓(𝑥)≤𝐾1f(x)≤K1 始终成立,那么称 𝑓(𝑥)f(x) 在 𝑋X 上有上界,𝐾1K1 是上界。相似地,如果存在一个实数 𝐾2K2 使得对所有 𝑥∈𝑋x∈X,𝑓(𝑥)≥𝐾2f(x)≥K2 成立,那么称 𝑓(𝑥)f(x) 在 𝑋X 上有下界,𝐾2K2 是下界。
2024/9/2 补充
当同时存在上界和下界时,我们说 𝑓(𝑥)f(x) 在 𝑋X 上是有界的。例如,正弦函数 𝑓(𝑥)=sin(𝑥)f(x)=sin(x) 在 (−∞,+∞)(−∞,+∞) 上的值始终处于 [−1,1][−1,1] 范围内,因此它是有界的,其中 𝑀=1M=1。
(2) 函数的单调性
当函数 𝑓(𝑥)f(x) 在其定义域的某区间 𝐼I 上,对任意两个点 𝑥1x1 和 𝑥2x2,如果 𝑥1<𝑥2x1<x2 恒有 𝑓(𝑥1)≤𝑓(𝑥2)f(x1)≤f(x2),则称 𝑓(𝑥)f(x) 在 𝐼I 上单调递增。如果 𝑓(𝑥1)≥𝑓(𝑥2)f(x1)≥f(x2),则称 𝑓(𝑥)f(x) 在 𝐼I 上单调递减。如果这些不等式严格成立,即 𝑓(𝑥1)<𝑓(𝑥2)f(x1)<f(x2) 或 𝑓(𝑥1)>𝑓(𝑥2)f(x1)>f(x2),则分别称为严格单调递增或严格单调递减。
例如,函数 𝑓(𝑥)=𝑥2f(x)=x2 在区间 (0,∞)(0,∞) 上单调递增,而在区间 (−∞,0](−∞,0] 上单调递减。但在整个区间 (−∞,∞)(−∞,∞) 上,由于在 𝑥=0x=0 处从递减变为递增,因此 𝑓(𝑥)f(x) 不是单调的。
单调函数在许多数学分析和应用领域中非常重要,因为它们的性质可以帮助确定函数的行为,例如在优化和数值计算中确定解的存在性和唯一性。
这些特性使得函数的行为更易于理解和预测,在进行数学建模和解析实际问题时尤其重要。
(3) 函数的奇偶性
设函数 𝑓(𝑥)f(x) 的定义域 𝐷D 关于原点对称。如果对于任意 𝑥∈𝐷x∈D,都有 𝑓(−𝑥)=𝑓(𝑥)f(−x)=f(x) 成立,那么称 𝑓(𝑥)f(x) 为偶函数。例如,𝑓(𝑥)=𝑥2f(x)=x2 是偶函数,因为 𝑓(−𝑥)=(−𝑥)2=𝑥2=𝑓(𝑥)f(−x)=(−x)2=x2=f(x)。偶函数的图形关于 𝑦y 轴是对称的。如果 𝐴(𝑥,𝑓(𝑥))A(x,f(x)) 是图形上的点,那么与它关于 𝑦y 轴对称的点 𝐴′(−𝑥,𝑓(𝑥))A′(−x,f(x)) 也在图形上。
如果对于任意 𝑥∈𝐷x∈D,都有 𝑓(−𝑥)=−𝑓(𝑥)f(−x)=−f(x) 成立,那么称 𝑓(𝑥)f(x) 为奇函数。例如,𝑓(𝑥)=𝑥3f(x)=x3 是奇函数,因为 𝑓(−𝑥)=(−𝑥)3=−𝑥3=−𝑓(𝑥)f(−x)=(−x)3=−x3=−f(x)。奇函数的图形关于原点是对称的。如果 𝐴(𝑥,𝑓(𝑥))A(x,f(x)) 是图形上的点,那么与它关于原点对称的点 𝐴′′(−𝑥,−𝑓(𝑥))A′′(−x,−f(x)) 也在图形上。
函数 𝑦=sin𝑥y=sinx 是奇函数,而 𝑦=cos𝑥y=cosx 是偶函数。函数 𝑦=sin𝑥+cos𝑥y=sinx+cosx 既非奇函数也非偶函数。
(4) 函数的周期性
设函数 𝑓(𝑥)f(x) 的定义域为 𝐷D。如果存在一个正数 𝑙l,使得对于任一 𝑥∈𝐷x∈D,有 (𝑥±𝑙)∈𝐷(x±l)∈D,且 𝑓(𝑥+𝑙)=𝑓(𝑥)f(x+l)=f(x) 恒成立,那么称 𝑓(𝑥)f(x) 为周期函数,𝑙l 称为 𝑓(𝑥)f(x) 的周期。周期函数的周期通常指最小正周期。
例如,函数 sin𝑥sinx 和 cos𝑥cosx 都是以 2𝜋2π 为周期的周期函数;函数 tan𝑥tanx 是以 𝜋π 为周期的周期函数。并非每个周期函数都有最小正周期。例如,狄利克雷(Dirichlet)函数 𝐷(𝑥)={0:𝑥∈𝑄}D(x)={0:x∈Q},任何正有理数都是它的周期,因为不存在最小的正有理数,所以它没有最小正周期。
以上内容旨在帮助读者更好地理解函数的奇偶性和周期性,两个在数学分析中非常重要的概念。
3. 反函数与复合函数
反函数
反函数是逆映射的一种特例,适用于单射函数。如果函数 𝑓:𝐷→𝑓(𝐷)f:D→f(D) 是单射(即对于 𝐷D 中的每个 𝑥x 和 𝑦y,如果 𝑓(𝑥)=𝑓(𝑦)f(x)=f(y) 则 𝑥=𝑦x=y),那么可以定义其反函数 𝑓−1:𝑓(𝐷)→𝐷f−1:f(D)→D。这意味着对于 𝑓(𝐷)f(D) 中的每个 𝑦y,存在唯一的 𝑥x 使得 𝑓(𝑥)=𝑦f(x)=y,并且 𝑓−1(𝑦)=𝑥f−1(y)=x。
例如,考虑函数 𝑦=𝑥3y=x3,其为单射函数,定义域和值域都是 𝑅R。因此,它的反函数是 𝑦=𝑥3y=3x。
如果函数 𝑓f 在定义域 𝐷D 上单调,则 𝑓f 是单射,从而其反函数 𝑓−1f−1 必然存在。如果 𝑓f 在 𝐷D 上单调增加,其反函数 𝑓−1f−1 在 𝑓(𝐷)f(D) 上也是单调增加的。这是因为如果 𝑦1<𝑦2y1<y2 则 𝑥1=𝑓−1(𝑦1)<𝑥2=𝑓−1(𝑦2)x1=f−1(y1)<x2=f−1(y2)。
图形上,函数 𝑦=𝑓(𝑥)y=f(x) 和其反函数 𝑦=𝑓−1(𝑥)y=f−1(x) 关于线 𝑦=𝑥y=x 对称。如果 (𝑎,𝑏)(a,b) 是 𝑓f 的图上的一点,那么 (𝑏,𝑎)(b,a) 是 𝑓−1f−1 的图上的一点。
复合函数
复合函数是将两个函数的输出和输入相结合的结果。给定两个函数 𝑦=𝑓(𝑢)y=f(u) 和 𝑢=𝑔(𝑥)u=g(x),其中 𝑔g 的值域 𝑅𝑔Rg 包含于 𝑓f 的定义域 𝐷𝑓Df,复合函数定义为 𝑦=𝑓(𝑔(𝑥))y=f(g(x)),通常记为 𝑓∘𝑔f∘g。
例如,如果 𝑓(𝑢)=arcsin(𝑢)f(u)=arcsin(u),定义域为 [−1,1][−1,1],且 𝑔(𝑥)=sin(𝑥)g(x)=sin(x),值域为 𝑅R,则 𝑔g 的值域完全包含在 𝑓f 的定义域内,所以复合函数 𝑓(𝑔(𝑥))=arcsin(sin(𝑥))f(g(x))=arcsin(sin(x)) 是有意义的,定义域为 𝑅R。
对于复合函数 𝑦=𝑢y=u,𝑢=tan(𝑥)u=tan(x),由于 tan(𝑥)tan(x) 可以取负值或超过 𝑢u 定义域 [0,∞)[0,∞) 的值,我们必须限制 𝑥x 的取值使得 tan(𝑥)tan(x) 始终非负,例如 𝑥x 在 [0,𝜋2)[0,2π) 内。
这些概念是高等数学中基本和重要的工具,用于分析和构造函数,以及解决多步骤映射问题。
4. 函数的运算
在函数的运算中,我们可以对定义域相同或者相交的函数进行各种数学运算,如加法、减法、乘法、除法以及更复杂的组合。以下是基本的函数运算类型和它们的定义:
基本运算
-
和 (差): 𝑓±𝑔f±g
- 定义为 (𝑓±𝑔)(𝑥)=𝑓(𝑥)±𝑔(𝑥)(f±g)(x)=f(x)±g(x),其中 𝑥∈𝐷x∈D,𝐷D 是 𝑓f 和 𝑔g 的定义域的交集。
-
积: 𝑓⋅𝑔f⋅g
- 定义为 (𝑓⋅𝑔)(𝑥)=𝑓(𝑥)⋅𝑔(𝑥)(f⋅g)(x)=f(x)⋅g(x),其中 𝑥∈𝐷x∈D。
-
商: 𝑓𝑔gf
- 定义为 (𝑓𝑔)(𝑥)=𝑓(𝑥)𝑔(𝑥)(gf)(x)=g(x)f(x),其中 𝑥∈𝐷x∈D 且 𝑔(𝑥)≠0g(x)=0。
特殊函数分解:偶函数和奇函数的组合
给定一个函数 𝑓(𝑥)f(x) 定义在区间 (−1,1)(−1,1),可以证明存在一个偶函数 𝑔(𝑥)g(x) 和一个奇函数 ℎ(𝑥)h(x) 使得 𝑓(𝑥)=𝑔(𝑥)+ℎ(𝑥)f(x)=g(x)+h(x)。
证明过程:
- 假设存在偶函数 𝑔(𝑥)g(x) 和奇函数 ℎ(𝑥)h(x) 满足 𝑓(𝑥)=𝑔(𝑥)+ℎ(𝑥)f(x)=g(x)+h(x)。
- 由偶函数和奇函数的性质知:
- 𝑔(−𝑥)=𝑔(𝑥)g(−x)=g(x)
- ℎ(−𝑥)=−ℎ(𝑥)h(−x)=−h(x)
- 则有 𝑓(−𝑥)=𝑔(−𝑥)+ℎ(−𝑥)=𝑔(𝑥)−ℎ(𝑥)f(−x)=g(−x)+h(−x)=g(x)−h(x)。
- 利用 𝑓(𝑥)=𝑔(𝑥)+ℎ(𝑥)f(x)=g(x)+h(x) 和 𝑓(−𝑥)=𝑔(𝑥)−ℎ(𝑥)f(−x)=g(x)−h(x),解得:
- 𝑔(𝑥)=𝑓(𝑥)+𝑓(−𝑥)2g(x)=2f(x)+f(−x)
- ℎ(𝑥)=𝑓(𝑥)−𝑓(−𝑥)2h(x)=2f(x)−f(−x)
这样,𝑔(𝑥)g(x) 是偶函数,因为 𝑔(−𝑥)=𝑓(−𝑥)+𝑓(𝑥)2=𝑔(𝑥)g(−x)=2f(−x)+f(x)=g(x),而 ℎ(𝑥)h(x) 是奇函数,因为 ℎ(−𝑥)=𝑓(−𝑥)−𝑓(𝑥)2=−ℎ(𝑥)h(−x)=2f(−x)−f(x)=−h(x)。
这种分解显示了任何函数都可以视为偶函数和奇函数的组合,这在处理函数问题时提供了一种有用的途径,特别是在对函数进行积分和求和时。
5. 初等函数
初等函数包括那些通过有限次四则运算和函数复合从常数和基本初等函数构成的函数。基本初等函数分为五类:
- 幂函数:𝑦=𝑥𝜇y=xμ,其中 𝜇μ 是任意常数。
- 指数函数:𝑦=𝑎𝑥y=ax,其中 𝑎>0a>0 且 𝑎≠1a=1。
- 对数函数:𝑦=log𝑎𝑥y=logax,其中 𝑎>0a>0 且 𝑎≠1a=1。特别地,当 𝑎=𝑒a=e(自然对数底数)时,记为 𝑦=ln𝑥y=lnx。
- 三角函数:如 𝑦=sin𝑥y=sinx,𝑦=cos𝑥y=cosx,𝑦=tan𝑥y=tanx 等。
- 反三角函数:如 𝑦=arcsin𝑥y=arcsinx,𝑦=arccos𝑥y=arccosx,𝑦=arctan𝑥y=arctanx 等。
这些基本函数可以通过各种运算组合形成更复杂的初等函数表达式。
双曲函数及其反函数
双曲函数是以指数函数 𝑒𝑥ex 为基础定义的,类似于三角函数,包括:
- 双曲正弦:sinh𝑥=𝑒𝑥−𝑒−𝑥2sinhx=2ex−e−x
- 双曲余弦:cosh𝑥=𝑒𝑥+𝑒−𝑥2coshx=2ex+e−x
- 双曲正切:tanh𝑥=sinh𝑥cosh𝑥=𝑒𝑥−𝑒−𝑥𝑒𝑥+𝑒−𝑥tanhx=coshxsinhx=ex+e−xex−e−x
这些函数具有以下性质:
- 双曲正弦:奇函数,单调增加,定义域为 (−∞,∞)(−∞,∞)。
- 双曲余弦:偶函数,最小值为 1,单调减少在 (−∞,0)(−∞,0) 和单调增加在 (0,∞)(0,∞)。
- 双曲正切:奇函数,值域在 (−1,1)(−1,1) 之间,单调增加。
反双曲函数
这些函数的反函数可以通过对数函数表达:
- 反双曲正弦:arsinh𝑥=ln(𝑥+𝑥2+1)arsinhx=ln(x+x2+1)
- 反双曲余弦(对 𝑥≥1x≥1):arcosh𝑥=ln(𝑥+𝑥2−1)arcoshx=ln(x+x2−1)
- 反双曲正切(对 −1<𝑥<1−1<x<1):artanh𝑥=12ln(1+𝑥1−𝑥)artanhx=21ln(1−x1+x)
这些反函数都是在其相应的定义域内单调的,并且反双曲正弦和反双曲正切是奇函数,而反双曲余弦是偶函数。
以上就是初等函数以及双曲函数和其反函数的基本介绍。这些函数在高等数学中非常重要,常用于各种数学分析、工程和物理学的问题中。