Tracking by Instance Detection: A Meta-Learning Approach

本文提出了一种将元学习(MAML)应用于实例检测以实现跟踪的方法。通过MAML,检测器可以快速适应新目标类别的视频序列,解决了传统跟踪器的类别限制和模型漂移问题。实验结果显示,该方法在保持高帧率的同时,能有效提高跟踪性能。
摘要由CSDN通过智能技术生成


论文地址
代码尚未开源

引言

现有的跟踪器基本上都是使用tracking by detection的思路,检测和跟踪的区别在于检测是多分类问题,而跟踪是二分类问题,但是二分类指的是前景和背景,理论上跟踪应该是跟踪任意类别的物体。那么由多分类检测迁移到任意类(二分类)的跟踪基本上三个分支,siamese系列:通过模板匹配的思想进行二分类,为了解决尺度问题引入了检测中的RPN,文章代表:SiamRPN,DaSIamRPN,SIamMask,SIamRPN++等等,最近又新出了一系列anchor-free的文章:SiamCAR,SiamBAN,SiamFC++,Ocean等等,这些文章共性是先使用孪生网络进行模板匹配,然后使用检测里面的东西进行classification and regression。第二个分支是Atom,Dimp系列(没有研读,不是很了解)。第三个分支我认为应该是域自适应性的文章,比如MDNet使用多域分支解决任意类的问题,但是每次使用的时候都要使用第一帧来学习新的全连接层的参数来适应新的域(为什么只更新全连接层?全连接用于分类),在线微调+长短时更新,速度相比较其他很慢,meta-tracker使用元学习的思想进行few-shot learning s适应新的域,测试时候一次迭代即可。但是MDNet还是存在模型漂移,尺度回归,过拟合,速度慢等问题。既然目标跟踪基本上基于检测,能否直接改造检测器,让检测器由固定类别迁移到任意类别的二分类,最近有几篇文章paper list做了这样的事,今天这篇文章也做了同样的事,本文做的简洁漂亮。分解来看:元学习(MAML)+目标检测,使用元学习改造目标检测器进行域自适应的二分类。性能nice,速度40FPS,如果换个更SOTA的检测器性能应该还会进一步提升。
域迁移简单演示

使用MAML学习一个实例检测器

改造检测器的关键在于当给一个新的instance,也就是一个新的视频域时候,如何使用第一帧的信息来获取一个好的初始化权重使用当前目标域。MAML元学习恰好是实现这一目标有效的方式,接下来介绍下MAML具体的形式:给予一个video clip Vi , 收集一系列的训练样本Di-S 支持集,detector model define

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值