第T4周:猴痘病识别

一、前期工作

🦾我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • TensorFlow2

1. 设置GPU

如果使用的是CPU可以忽略这步

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

gpu0
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')

2. 导入数据

import matplotlib.pyplot as plt
import os,PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

from tensorflow import keras
from tensorflow.keras import layers,models

import pathlib
data_dir = "data/p4/"

data_dir = pathlib.Path(data_dir)
data_dir
PosixPath('data/p4')

3. 查看数据

数据集一共分为cloudyrainshinesunrise四类,分别存放于weather_photos文件夹中以各自名字命名的子文件夹中。

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)
图片总数为: 2142
Monkeypox = list(data_dir.glob('Monkeypox/*.jpg'))
PIL.Image.open(str(Monkeypox[0]))

在这里插入图片描述

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 2142 files belonging to 2 classes.
Using 1714 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 2142 files belonging to 2 classes.
Using 428 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['Monkeypox', 'Others']

2. 可视化数据

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 224, 224, 3)
(32,)
  • Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch():预取数据,加速运行

函数原型:

tf.keras.preprocessing.image_dataset_from_directory(
    directory,
    labels="inferred",
    label_mode="int",
    class_names=None,
    color_mode="rgb",
    batch_size=32,
    image_size=(256, 256),
    shuffle=True,
    seed=None,
    validation_split=None,
    subset=None,
    interpolation="bilinear",
    follow_links=False,
)

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
在这里插入图片描述

使用prefetch()可显著减少空闲时间:

  • cache():将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

在这里插入图片描述

三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape

网络结构图(可单击放大查看):
在这里插入图片描述

num_classes = 2

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的

关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(num_classes)               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 rescaling (Rescaling)       (None, 224, 224, 3)       0         
                                                                 
 conv2d (Conv2D)             (None, 222, 222, 16)      448       
                                                                 
 average_pooling2d (Average  (None, 111, 111, 16)      0         
 Pooling2D)                                                      
                                                                 
 conv2d_1 (Conv2D)           (None, 109, 109, 32)      4640      
                                                                 
 average_pooling2d_1 (Avera  (None, 54, 54, 32)        0         
 gePooling2D)                                                    
                                                                 
 conv2d_2 (Conv2D)           (None, 52, 52, 64)        18496     
                                                                 
 dropout (Dropout)           (None, 52, 52, 64)        0         
                                                                 
 flatten (Flatten)           (None, 173056)            0         
                                                                 
 dense (Dense)               (None, 128)               22151296  
                                                                 
 dense_1 (Dense)             (None, 2)                 258       
                                                                 
=================================================================
Total params: 22175138 (84.59 MB)
Trainable params: 22175138 (84.59 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.Adam` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.Adam`.
WARNING:absl:There is a known slowdown when using v2.11+ Keras optimizers on M1/M2 Macs. Falling back to the legacy Keras optimizer, i.e., `tf.keras.optimizers.legacy.Adam`.

五、训练模型

关于ModelCheckpoint的详细介绍可参考文章 🔗ModelCheckpoint 讲解【TensorFlow2入门手册】

from tensorflow.keras.callbacks import ModelCheckpoint

epochs = 50

checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer])
Epoch 1/50

2024-07-09 23:08:17.159569: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.
54/54 [==============================] - ETA: 0s - loss: 1.3266 - accuracy: 0.5683

2024-07-09 23:08:29.427166: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.

Epoch 1: val_accuracy improved from -inf to 0.64953, saving model to best_model.h5
54/54 [==============================] - 14s 172ms/step - loss: 1.3266 - accuracy: 0.5683 - val_loss: 0.6538 - val_accuracy: 0.6495
Epoch 2/50
54/54 [==============================] - ETA: 0s - loss: 0.6261 - accuracy: 0.6599
Epoch 2: val_accuracy did not improve from 0.64953
54/54 [==============================] - 8s 153ms/step - loss: 0.6261 - accuracy: 0.6599 - val_loss: 0.6328 - val_accuracy: 0.6028
Epoch 3/50
54/54 [==============================] - ETA: 0s - loss: 1.0551 - accuracy: 0.5490
Epoch 3: val_accuracy did not improve from 0.64953
54/54 [==============================] - 8s 158ms/step - loss: 1.0551 - accuracy: 0.5490 - val_loss: 
...
Epoch 50/50
54/54 [==============================] - ETA: 0s - loss: 5.2948 - accuracy: 0.8495
Epoch 50: val_accuracy improved from 0.78271 to 0.81308, saving model to best_model.h5
54/54 [==============================] - 8s 141ms/step - loss: 5.2948 - accuracy: 0.8495 - val_loss: 7.8466 - val_accuracy: 0.8131

六、模型评估

6.1. Loss与Accuracy图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

6.2. 指定图片进行预测

# 加载效果最好的模型权重
model.load_weights('best_model.h5')
from PIL import Image
import numpy as np

img = Image.open("./data/p4/Others/NM01_01_10.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) 

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
2024-07-09 23:16:58.751730: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.


1/1 [==============================] - 1s 618ms/step
预测结果为: Others

思考:1.最大池化与平均池化的区别是什么呢?2.学习率是不是越大越好,优化器该如何设置呢?

  1. 最大池化与平均池化的区别

    • 最大池化(Max Pooling):在卷积神经网络中,最大池化是一种常用的池化操作,它通过在输入特征图上滑动一个小窗口,每次只保留窗口内的最大值。这种操作有助于减少数据的空间维度,同时保留最重要的特征信息。最大池化通常用于保留特征图中的显著特征,因为它认为这些特征对于后续的分类或其他任务最为重要。
    • 平均池化(Average Pooling):与最大池化不同,平均池化在滑动窗口内取所有值的平均值。这种方法相对平滑,可以减少过拟合的风险,因为它不会过分强调任何一个特征点,而是考虑了窗口内所有特征的平均表现。平均池化在某些情况下可能不如最大池化那么有效,因为它可能会丢失一些重要的局部特征。
  2. 学习率与优化器设置

    • 学习率是神经网络训练中一个非常重要的超参数,它决定了在每次迭代中权重更新的幅度。学习率并不是越大越好,因为:
      • 如果学习率太高,可能会导致模型在训练过程中震荡,甚至发散,无法收敛到一个好的解。
      • 如果学习率太低,训练过程可能会非常缓慢,或者陷入局部最优解,无法达到全局最优。
    • 优化器的选择和设置通常依赖于具体问题和数据集的特性。以下是一些常见的优化器和它们的一些特点:
      • SGD(随机梯度下降):最基本的优化器,适用于大多数问题,但可能需要仔细调整学习率和其他超参数。
      • Adam:自适应矩估计优化器,它结合了动量和RMSprop的优点,通常不需要太多的手动调整,是一个比较通用的选择。
      • RMSprop:一种自适应学习率优化器,对于非平稳目标特别有用。
      • AdaGrad:适用于处理稀疏数据,但可能会遇到学习率逐渐减小的问题。
      • AdaDelta:改进自AdaGrad,解决了学习率逐渐减小的问题。

    在实际应用中,通常需要通过实验来确定最佳的学习率和优化器设置。此外,还可以使用学习率衰减策略,如指数衰减、阶梯衰减或余弦退火等,来帮助模型更好地收敛。

  • 26
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值