DataFrame迭代过程中多行修改

Python 专栏收录该内容
21 篇文章 0 订阅

方法1:df.loc[conditions]=row.values,逐行地进行整行替换

for row in df.iterrows():
    row['given_amount']=row['amount'];
    row['given_percent']=1
    row['remain_amount']=0
    row['remain_percent']=0
    total_amount=total_amount-row['amount']
    #df_debts.iloc[index]=row #此法不可行,会导致重新迭代。
    df.loc[df['sno']==row['sno']]=row.values

 方法2:用loc,批量赋值替换

indexer=df.loc[condition]
df.loc[indexer,'col_1']=new_value
df.loc[indexer,'col_2']=df.loc[indexer,'col_3']*10
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页

打赏

morein2008

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值