最近在学习Pytorch v1.3最新版和Tensorflow2.0。
我学习Pytorch的主要途径:莫烦Python和Pytorch 1.3官方文档 ,Pytorch v1.3跟之前的Pytorch不太一样,比如1.3中,Variable类已经被弃用了(目前还可以用,但不推荐),tensor可以直接调用backward方法进行反向求导,不需要再像之前的版本一样必须包装成Variable对象之后再backward。
Tensorflow2.0的学习可以参考北大学生写的教程:https://tf.wiki/zh/basic/basic.html ,TensorFlow2.0与之前的版本也有很大不同,TF 1.x的很多写法已经不适用了,2.0把大量keras的内容包括了进去,使用之前的TF方便,但我总感觉混在一起,那还不如直接学Keras,另外跟Pytorch相比,为了实现相同的功能,TF2.0的代码还是太多了,不够简洁。
为了对比两者的速度,今天自己第一次尝试用Pytorch实现了用于图片分类的最简单的全连接神经网络。代码包括了神经网络的定义、使用DataLoader批训练、效果的准确性评估,模型使用方法、输出转换为label型等内容。
1 import time
2 import torch.nn as nn
3 from torchvision.datasets import FashionMNIST
4 import torch
5 import numpy as np
6 from torch.utils.data import DataLoader
7 import torch.utils.data as Data
8
9 '''数据集为FashionMNIST'''
10 data=FashionMNIST('../pycharm_workspace/data/')
11
12 def train_test_split(data,test_pct=0.3):
13 test_len=int(data.data.size(0)*test_pct)
14 x_test=data.data[0:test_len].type(torch.float)
15 x_train=data.data[test_len:].type(torch.float)
16
17 y_test=data.targets[0:test_len]
18 y_train=data.targets[test_len:]
19
20 return x_train,y_train,x_test,y_test
21
22 '''自定义神经网络1'''
23 class MLP(nn.Module):
24 def __init__(self,input_size,hidden_size,output_size):
25 super().__init__()
26 self.linear1=nn.Linear(input_size,hidden_size)
27 self.linear2=nn.Linear(hidden_size,output_size)
28
29 def forward(self,x):
30 out=self.linear1(x)
31 out=torch.relu(out)
32 out=self.linear2(out)
33 return out
34 #out=torch.softmax()
35
36 def train_1():
37 '''创建模型对象'''
38 input_size=784#训练数据的维度
39 hidden_size=64#隐藏层的神经元数量,这个数量越大,神经网络越复杂,训练后网络的准确度越高,但训练耗时也越长
40 ouput_size=10#输出层的神经元数量
41 mlp=MLP(input_size,hidden_size,ouput_size)
42 '''定义损失函数'''
43 loss_func=torch.nn.CrossEntropyLoss()
44 '''定义优化器'''
45 #optimizer=torch.optim.RMSprop(mlp.parameters(),lr=0.001,alpha=0.9)
46 #optimizer=torch.optim.Adam(mlp.parameters(),lr=0.01)
47 optimizer=torch.optim.Adam(mlp.parameters(),lr=0.001)
48 x_train,y_train,x_test,y_test=train_test_split(data,0.2)
49 start=time.time()
50 for i in range(200):
51 x=x_train.view(x_train.shape[0],-1)
52 prediction=mlp(x)
53 loss=loss_func(prediction,y_train)
54 print('Batch No.%s,loss:%s'%(i,loss.data.numpy()))
55 optimizer.zero_grad()
56 loss.backward()
57 optimizer.step()
58 end=time.time()
59 print('runnig time:%.3f sec.'%(end-start))
60
61 '''评估模型效果'''
62 samples=10000
63 '''取一定数量的样本,用于评估'''
64 x_input=x_test[:samples]
65 '''模型输入必须为tensor形式,且维度为(784,)'''
66 x_input=x_input.view(x_input.shape[0],-1)
67 y_pred=mlp(x_input)
68 '''把模型输出(向量)转为label形式'''
69 y_pred_=list(map(lambda x:np.argmax(x),y_pred.data.numpy()))
70 '''计算准确率'''
71 acc=sum(y_pred_==y_test.numpy()[:samples])/samples
72 print('Accuracy:',acc)
###输出:Accuracy:0.8153
73
74 '''自定义神经网络2'''
75 class MyNet(nn.Module):
76 def __init__(self,in_size,hidden_size,out_size):
77 super().__init__()
78 self.linear1=nn.Linear(in_size,hidden_size)
79 self.linear2=nn.Linear(hidden_size,out_size)
80
81 def forward(self,x):
82 x=x.view(x.size(0),-1)
83 out=self.linear1(x)
84 out=torch.relu(out)
85 out=self.linear2(out)
86 return out
87
88 def train_2():
89 num_epoch=20
90 #t_data=data.data.type(torch.float)
91 x_train,y_train,x_test,y_test=train_test_split(data,0.2)
92 '''使用DataLoader批量输入训练数据'''
93 dl_train=DataLoader(Data.TensorDataset(x_train,y_train),batch_size=100,shuffle=True)
94 '''创建模型对象'''
95 model=MyNet(784,512,10)
96 '''定义损失函数'''
97 loss_func=torch.nn.CrossEntropyLoss()
98 '''定义优化器'''
99 optimizer=torch.optim.Adam(model.parameters(),lr=0.001)
100 start=time.time()
101 for i in range(num_epoch):
102 for index,(x_data,y_data) in enumerate(dl_train):
103 prediction=model(x_data)
104 loss=loss_func(prediction,y_data)
105 print('No.%s,loss=%.3f'%(index,loss.data.numpy()))
106 optimizer.zero_grad()
107 loss.backward()
108 optimizer.step()
109 print('No.%s,loss=%.3f'%(i,loss.data.numpy()))
110 end=time.time()
111 print('runnig time:%.3f sec.'%(end-start))
112
113 '''评估模型的Accuracy'''
114 samples=10000
115 '''取一定数量的样本,用于评估'''
116 y_pred=model(x_test[:samples])
117 '''把模型输出(向量)转为label形式'''
118 y_pred_=list(map(lambda x:np.argmax(x),y_pred.data.numpy()))
119 '''计算准确率'''
120 acc=sum(y_pred_==y_test.numpy()[:samples])/samples
121 print('Accuracy:',acc)
122 ###输出:Accuracy:0.8622
题外话,用相同的数据集、相同的神经网络结构、相同的优化器、相同的参数,把Pytorch跟TensorFlow2.0对比,发现pytorch对cpu的占用更小,TF 2.0跑起来Mac pro呼呼地响,Pytorch跑的时候安静很多。