- 博客(336)
- 资源 (7)
- 收藏
- 关注
原创 【大模型02】Deepseek使用和prompt工程
(1)为什么能实现成本低,计算速度快架构设计方面DeepSeek MoE架构:在推理时仅激活部分专家,避免了激活所有参数带来的计算资源浪费。ML架构:MLA通过降秩KV矩阵,减少了显存消耗。训练策略方面多token预测(MTP)目标:在训练过程中采用多token预测目标,即在每个位置上预测多个未来token,增加了训练信号的密度,提高了数据效率。混合精度训练框架:在训练中,对于占据大量计算量的通用矩阵乘法(GEMM)操作,采用FP8精度执行。
2025-05-29 09:56:44
413
原创 【01】大模型原理与API使用
本篇目标·AIGC发展:从GPT1到GPT4·AIGC的表现与优势·AIGC的通用能力应用·大模型API使用CASE-情感分析-QwenCASE-天气Function-QwenCASE-表格提取-QwenCASE-运维事件处置-Qwen。
2025-05-26 18:30:30
644
原创 数字滤波器应用介绍
线性滤波器FIR ,会引起恒定延迟,通过补零的方式补偿非线性滤波器IIR,会引起频率相关的延迟,通过零相位延迟filtfilt补偿从信号中去除不需要的频谱时,通过滤波和补偿实现。如果需要去除的频率与采样率相差甚远,比如4kHz 与100Hz, 可通过 低通滤波->补偿->降采样–> 滤波 补偿 -->上采样还原的方法。*降采样前一定要先低通滤波为了防止混叠。
2025-05-12 18:57:46
59
原创 workbench fluent动画
计算设置-解决方案动画-新建一个,画面选择刚刚上面新建的 并设置保存类型和位置。运行计算结束后,在结果-动画-播放里查看效果。项目已经完成,主要目的是做后期展示。结果-等值线-新建一个画面。加载项目 后台-初始化。
2025-05-09 15:51:00
161
原创 ANSYS Fluent -地下市政供热管道泄漏模型-note
由图可知:管道泄漏后土壤受到热水扩散的影响,温度逐渐升高,但仿真泄漏时间只有60s,所以温度影响范围小脚。描述几何结构-更新边界 在边界类型处,针对出口 入口 上下左右 进行逐个修改。创建分析项目 组件系统-几何结构;组件系统(带fluent网格划分)区域改进 确认各个区域比如管道 泄漏处 外部区域的 region type。描述几何结构: 确认几何结构类型(流体?) 是否共享拓扑 等。添加局部尺寸 对于细小部分,比如泄漏处,添加局部尺寸。设置(主要为求解设置)求解-切换到求解模式。
2025-04-21 19:40:48
450
原创 matlab-数字滤波器设计与实战
零相位响应是一种理想的滤波器特性,能够完全避免相位失真,但由于其非因果性和计算复杂度,通常只适用于离线处理或非实时系统。在实时系统中,通常需要在相位失真和延迟之间进行权衡,选择线性相位或非线性相位滤波器。
2025-04-14 11:01:55
800
原创 互功率谱 cpsd
互功率谱(Cross-Power Spectral Density, CPSD)是信号处理中用于描述两个信号在频域中相关性的工具。它表示两个信号在不同频率下的功率分布及其相位关系,广泛应用于模态分析、系统辨识和信号匹配等领域。
2025-03-19 15:04:20
313
原创 使用joblib 多线程/多进程
joblib 是一个 Python 库,用于高效的并行计算和缓存。它支持 多进程(multiprocessing) 和 多线程(multithreading),主要用于加速 CPU 密集型和 I/O 密集型任务。
2025-03-06 11:21:19
2376
原创 t检验 -python
t检验的作用是帮助我们通过样本数据来推断总体的情况,尤其在小样本数据和未知总体方差的情况下特别有用。它通过检验均值差异来判断不同实验组之间、样本与总体之间是否存在显著的统计差异,从而为决策提供依据。
2025-02-12 16:18:34
47
原创 ArrayFire异构计算
ArrayFire 是一个高性能计算库,专门为科学计算、机器学习、计算机视觉等领域设计。它提供了易用的接口,能够在 CPU、GPU 和其他加速硬件(如 OpenCL、CUDA)的设备上执行计算,支持高度并行和向量化操作。ArrayFire 的主要特点跨平台支持支持 CUDA(NVIDIA GPU)、OpenCL(AMD GPU 和 Intel 设备)以及多核 CPU(基于 SIMD 优化)。简单易用的 API提供 Python、C/C++、Fortran、Rust 等接口,简化复杂的计算任务。
2025-01-23 17:57:02
73
原创 谱熵(Spectral Entropy)
谱熵是基于信号功率谱的概率分布计算的。具体步骤如下:计算信号的功率谱密度(PSD)。将功率谱密度归一化为概率分布。计算概率分布的熵。
2025-01-20 18:29:33
594
原创 功率密度谱
方法 1:周期图法# 使用 周期方法计算功率谱密度# 示例信号sample_rate = 1000 # 采样率# 计算功率谱密度# 绘制功率谱密度plt.show()方法2 welch# 使用 Welch 方法计算功率谱密度# 计算功率谱密度# 绘制功率谱密度plt.show()
2025-01-20 18:09:34
175
原创 pkl转h5
我的pkl 保存的是datafram 数据,pandas 本身提供了直接支持将 DataFrame 存储为 HDF5 格式的功能。具体而言,您可以使用 pandas.DataFrame.to_hdf() 方法来实现这一点。问题: pkl 在不同大方读取时经常会因为pandas 版不一致报错,ModuleNotFoundError: No module named ‘pandas.core.indexes.numeric’解决思路: pkl 格式转换成h6。
2025-01-13 11:17:36
533
原创 滤波器设计流程
4.滤波应用:根据 zerophase 参数决定是否进行双向滤波(正向 + 反向)或仅进行正向滤波。3.滤波器设计:设计带通 Butterworth 滤波器并转换为 SOS 表示。2.检查频率范围是否合法,计算归一化的频率。5.返回结果:返回处理后的滤波数据。
2025-01-07 17:58:34
80
原创 曲波系数 curvelet transform
曲波变换(Curvelet Transform)是一种多尺度、多方向的变换工具,能够有效地表示信号中的几何特征(如边缘、曲线等)。曲波变换后的系数具有明确的物理意义,反映了信号在不同尺度、不同方向上的能量分布。
2025-01-06 17:18:33
200
原创 Label SMOOTHING
Label Smoothing(标签平滑)是一种正则化技术,主要用于分类任务中,通过调整目标标签的分布来防止模型过度自信(overconfidence),从而提高模型的泛化能力。Label Smoothing 通过将 one-hot 编码的标签“平滑”为一个更软的分布,例如 [0.1, 0.1, 0.8],从而减少模型对某一类别的过度自信。Label Smoothing 通过调整目标标签的分布,防止模型过度自信。防止过拟合:减少模型对训练数据的过度自信,提高泛化能力。提高鲁棒性:使模型对噪声标签更加鲁棒。
2025-01-03 17:27:43
137
原创 git 推送文件到远程
5. git status 查看刚刚对文件夹的修改操作。4. 将要上传的文件放入刚刚clone 下来的文件夹中。6. git add . 将刚刚的行为都添加。7. git commit -m “注释”8. git push 推送文件至远程。
2025-01-03 13:46:49
310
原创 测量信号相似性、测量延迟并对齐、比较频率
如何比较具有不同长度或不同采样率的信号?如何在测量中发现存在信号还是只存在噪声?两个信号是否相关?如何测量两个信号之间的延迟(以及如何将它们对齐)?如何比较两个信号的频率成分?也可以在信号的不同段中寻找相似性以确定信号是否为周期性信号。
2025-01-02 11:03:08
146
原创 matlab-数字滤波器设计与实战
零相位响应是一种理想的滤波器特性,能够完全避免相位失真,但由于其非因果性和计算复杂度,通常只适用于离线处理或非实时系统。在实时系统中,通常需要在相位失真和延迟之间进行权衡,选择线性相位或非线性相位滤波器。
2024-12-30 18:13:49
316
原创 Curvelet 变换与FDCT
Curvelet变换 是一种强大的多尺度、多方向信号分析工具,能够精确地表示信号中的曲线和边缘特征。其稀疏表示和局部化特性使其在图像处理、地震数据分析和医学成像等领域具有广泛的应用。通过使用Curvelet变换,可以更高效地处理和分析复杂信号。
2024-12-19 16:04:04
1054
原创 Transformer(1)
长期依赖问题:难以捕捉远程依赖关系。顺序计算:训练效率低下,难以并行。固定长度上下文:信息压缩导致的信息丢失。记忆容量有限:难以保留序列中的所有信息。长程依赖处理不佳:捕捉远距离词语关系的能力较弱。Transformer的引入,通过自注意力机制和并行计算,有效解决了这些问题,使其在自然语言处理和其他序列任务上表现出色。注意力机制(Attention Mechanism)是深度学习,特别是在处理序列数据(如自然语言处理、机器翻译等)中的一种重要技术。
2024-12-09 10:02:17
55
原创 FK滤波变换
f-k变换实质上是一种二维傅里叶变换。在时间域上,对一道地震信号做傅里叶变换,可以得到在时间上不同频度(称为频率)的 波动组分的振幅和相位信息。同样地,在空间上,我们也可以对多道地震信号做类似傅里叶变 换的数值变换,得到在空间上不同频度(称为波数)的波动组分的振幅和相位信息。进行这两种变换后,便可以分析一个炮集记录在频率-波数域的能量分布情况。
2024-12-05 15:35:56
835
原创 F-K变换法
f-k变换实质上是一种二维傅里叶变换。在时间域上,对一道地震信号做傅里叶变换,可以得到在时间上不同频度(称为频率)的 波动组分的振幅和相位信息。同样地,在空间上,我们也可以对多道地震信号做类似傅里叶变 换的数值变换,得到在空间上不同频度(称为波数)的波动组分的振幅和相位信息。进行这两种变换后,便可以分析一个炮集记录在频率-波数域的能量分布情况。
2024-12-05 15:33:56
583
1
原创 窗函数及汉宁窗
窗函数(英语:window function)在信号处理中是指一种除在给定区间之外取值均为0的实函数。譬如:在给定区间内为常数而在区间外为0的窗函数被形象地称为矩形窗。任何函数与窗函数之积仍为窗函数,所以相乘的结果就像透过窗口“看”其他函数一样。窗函数在频谱分析、滤波器设计、波束形成、以及音频数据压缩(如在Ogg Vorbis音频格式中)等方面有广泛的应用。
2024-11-06 13:29:25
1569
原创 Transformer的一些小知识点
什么是残差连接呢?残差连接就是把网络的输入和输出相加,即网络的输出为F(x)+x,在网络结构比较深的时候,网络梯度反向传播更新参数时,容易造成梯度消失的问题,但是如果每层的输出都加上一个x的时候,就变成了F(x)+x,对x求导结果为1,所以就相当于每一层求导时都加上了一个常数项‘1’,有效解决了梯度消失问题。
2024-11-06 13:26:15
77
原创 抽点滤波与差分
先抽点后差分 与 先 差分后抽点,在幅值上有点区别,在相位角上没区别。先抽点后差分的幅值小一点。差分带来的影响是: 与原来数据角度相差90 数值变化。抽点 滤波: [::2]
2024-11-06 13:24:32
69
原创 级联滤波器
级联滤波器(Cascade Filters)是通过串联多个滤波器来获得更复杂的频率响应。每个滤波器的输出作为下一个滤波器的输入,这种方法用于精确控制系统的频率响应,比如在特定频率段获得更陡峭的衰减或组合多种滤波效果(如低通、高通、带通等)。使用 scipy.signal.butter 设计滤波器,如低通、高通或带通滤波器。假设我们设计两个滤波器,一个是低通,一个是高通。级联多个传递函数,通过串联多个滤波器系统来实现更复杂的滤波效果。设计多个滤波器(低通、高通、带通等)并获得其滤波器系数。
2024-10-18 17:08:04
445
原创 pytorch 快速入门-方法篇
1. 什么是Pytorch一种基于Python的机器学习框架2个主要特点:*在GPU上计算 N维Tensor*在训练DNN时自动微分2. 训练神经网络的流程Training Neural NetworksTraining & Testing Neural Networks3. Training & Testing Neural Networks -in Pytorch3.1 Step1 Load Data (Dataset &^ Dataloader)
2024-08-22 14:55:05
2774
1
原创 傅里叶变换的直观解释
拉式变换很重要的原因是,很多系统,比如RLC电路,弹簧上的质量 以及普遍的控制系统,会产生正弦和指数输出,需要拉式变换去分析他们。积分无穷大,说明原始函数里的参数是 w=3 alpha=-0.5,当 w= pi 时,积分为无穷大,否则为0。当w=0时,cos(wt)=1 ,F(0)=左图中f(t) 图形下的面积。如果W 不是4个频率中的一个,则只能得到0,正区域和负区域会相互抵消。傅里叶变换的强大之处,能从原本的函数中扫描出正弦(余弦?F(w)是个复数有实部和虚部两部分,由实部和虚部两部分。
2024-07-16 18:34:33
186
原创 桥梁模态识别
在信号处理、电子工程和声学中,FRF代表“频率响应函数”。这是描述系统或设备如何响应不同频率输入的数学表示。FRF(频率响应函数)是系统输入频率(通常以赫兹为单位)与输出响应幅度(通常以分贝或线性单位为单位)之间的关系。它提供了一种理解系统行为的方式,因为它揭示了系统如何放大或衰减不同频率的信号以及引入相位移。FRF通常以图表形式表示,称为“频响曲线”或“幅度响应图”。横轴表示频率,纵轴表示幅度。该图表显示系统响应随频率变化的方式。FRF的一些关键方面包括:增益:FRF描述系统的增益或放大。
2024-06-05 16:37:17
544
原创 提取时频脊线
同步压缩是一种在数字信号处理中常用的技术,它的目的是对信号进行压缩,同时保留信号中的时间结构信息。这种压缩方式非常适用于需要实时传输、存储和处理的信号,如音频、视频、传感器数据等。常用方法:小波变换(Wavelet Transform):小波变换在信号处理中被广泛应用,它能够将信号分解成不同尺度和频率的成分,从而允许对信号进行时频分析。通过选择适当的小波基函数和压缩算法,可以实现同步压缩。
2024-05-31 17:21:19
899
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人