自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(383)
  • 资源 (7)
  • 收藏
  • 关注

原创 主旋参数(四元数)与欧拉参数

四元数。

2026-02-01 22:12:42 174

原创 主旋参数定义

欧拉角是非常好的构建模块,非常有用,也是一个基础性的东西。但对于一般的航天器三维运动,我通常不会使用欧拉角。我可能会在一些子部件或者局部问题中使用它们,在某些地方它们确实非常有用。但对于整体的三维翻滚运动(3D tumble),欧拉角并不好用,因为我们永远不会离奇异点超过 90°。现在我们要引入主旋转向量(Principal Rotation Vector)。在航天领域我们通常这么称呼它。

2026-01-30 21:30:57 578

原创 对称欧拉角加法

2026-01-29 09:25:54 69

原创 欧拉角运动学差分方程

对称欧拉角非对称欧拉角规律

2026-01-29 09:19:24 181

原创 【无标题】

姿态不能加,角速度可以加;姿态的所有加减,最终都要回到 DCM。

2026-01-29 08:49:24 138

原创 【无标题】

ψ\psiψ(绕 3 轴)θ\thetaθ(绕 2 轴)ϕ\phiϕ(绕 1 轴)

2026-01-28 22:36:11 804

原创 欧拉角的定义

姿态常用 3-2-1,而轨道用 3-1-3。

2026-01-28 21:20:38 131

原创 刚体运动学复习笔记

三维姿态最少 3 个坐标,但可能奇异。DCM 提供非奇异表示:9 个坐标 + 6 个约束 = 3 自由度正交 + 单位长度 + 右手系统C˙−ωCC˙−ωC适用于任意正交矩阵数值积分需注意约束维护。

2026-01-28 20:20:17 742

原创 DCM运动学微分方程习题

2026-01-28 20:14:11 98

原创 DASPY

GitHub - HMZ-03/DASPy: DASPy: A Python Toolbox for DAS (Distributed Acoustic Sensing) data processing.DASPy — DASPy中文教程 1.0.0 文档DAS其他相关库:DASPY、ObsPy DASCore lightguidehttps://dascore.org/api/dascore/proc.htmlhttps://dascore.org/tutorial/processing.

2026-01-08 11:36:56 27

原创 振动信号特征参数及计算表达式

振动信号特征参数及计算表达式。

2026-01-06 14:01:05 19

原创 自适应滤波

Adaptive Signal Processing

2026-01-06 14:00:24 116

原创 ssqueezepy 同步挤压变换

ssqueezepy 是一个基于 Python 的高性能信号处理库,专门用于 同步挤压变换 (Synchrosqueezing Transform, SST) 和 连续小叶变换 (CWT)。它是目前在信号时频分析(Time-Frequency Analysis)领域非常强大的工具,特别擅长处理非平稳信号(即频率随时间变化的信号)。

2026-01-05 16:30:24 22

原创 AE 自编码器-异常检测

自编码器(Autoencoder, AE) 是一种无监督学习的神经网络,主要用于数据压缩、降维和特征提取。简单来说,它的目标是“学会如何将输入复制到输出”,但在中间过程中,它会强迫模型寻找数据中最重要的特征。

2025-12-31 17:27:05 598

原创 小波时频图及深度学习应用

显存管理:如果是在 GPU 上训练,可以考虑使用像 nnAudio 这样的库,它可以在 GPU 上利用卷积层直接计算 CWT,速度比在 CPU 上算完再存图片快 10 倍以上。在 plt.figure 中设置合适的 figsize 和 dpi,直接输出对应尺寸的图片,可以省去后续在 DataLoader 中缩放图片(Resize)的时间。边缘效应处理:小波变换在信号两头有“边界效应”,如果你的一维信号长度只有 512,建议只取中间的 400 个点生成图片。数值越大,频率分辨力越高,但时间轴上会产生拖尾。

2025-12-29 16:33:56 45

原创 经典语义分割模型-Unet

拼接的时候保证空间分辨率大小一致就行,通道的数量不相等没关系,会进行拼接U-Net 的衍生版本随着深度学习的发展,U-Net 家族也进化出了许多强力变体:3D U-Net: 用于处理 3D CT/MRI 扫描数据。Res-UNet: 在 U-Net 中加入残差连接,解决深层网络退化问题。Attention U-Net: 加入注意力机制,让模型只关注图像中的重点区域。U-Net++: 重新设计了中间的跳跃连接,使其更加密集和高效。

2025-12-25 17:05:32 49

原创 图像分割基础

图像分割(Image Segmentation) 是计算机视觉中的一项核心任务。如果说“目标检测”是给物体画一个框(Bounding Box),那么“图像分割”就是给物体的轮廓进行精细的描边,实现像素级的分类。图像分割(Image Segmentation) 是计算机视觉中的一项核心任务。如果说“目标检测”是给物体画一个框(Bounding Box),那么“图像分割”就是给物体的轮廓进行精细的描边,实现像素级的分类。

2025-12-23 19:21:54 60

原创 shuffleNet 和mobilenet

MobileNet 和 ShuffleNet 是深度学习领域中针对移动端和嵌入式设备设计的两大主流“轻量化”神经网络家族。它们的核心目标一致:在尽量不损失精度的情况下,减少参数量(Parameters)和计算量(FLOPs),提升在手机等低功耗设备上的推理速度。

2025-12-17 16:35:55 41

原创 SHAP 蜂群图 SHAP beeswarm 重要性 + 方向 + 分布 + 非线性

一句话概括:每一行是一个特征,每一个点是一个样本,该点的位置表示该特征对预测结果的贡献大小(SHAP值)。它解决了两个问题:哪些特征最重要?特征取值大 / 小时,对预测是正向还是负向影响?

2025-12-16 11:35:20 437

原创 Jason安装细节

注意事项: 1. 在1的教程中,添加系统环境变量时,端口号填多少,参考证书文件中的端口号。如我这个里面就是 27000 相应的环境变量值就要修改。安装完成后,如果仍然提示端口号不一致,试试重启。

2025-11-10 14:30:01 190

原创 Unet-初探

U-Net 是由 Ronneberger 等人在 2015 年提出的一种卷积神经网络,最早用于 医学图像分割(尤其是细胞、组织、病灶区域的分割)。它的名字来源于网络结构的形状 —— 对称的“U”形。U-Net 的设计目标是:在训练样本较少的情况下,仍然能够实现高精度的 像素级分割。

2025-10-15 18:15:54 110

原创 matlab 代码与python代码转换的细节

最近在做项目的时候,涉及到需要将matlab 代码转换为python代码,在实现过程中的踩坑和注意点记录如下:主要是索引和切片和单列向量提取后的维度不一致。此外: 一开始上来就借助AI进行了转换,后果就是结果不一致,花大量时间一行一行单步调试,对参数结果。(大哭,浪费了很多时间)matlab 提取列向量之后是二维列,python是一维, 需要将一维转成二维。AI改完,应先基于已有认知对一下代码,是否有常规的错误。

2025-10-14 17:45:47 363

原创 【项目实战】知识库——基础理论1

总资产’指公司拥有的全部资源。2. 各公司独立答案:A公司6,601,086,000元,B公司1,249,642,000元,C公司217,435,000元。=> 让比较好的大模型,给出 answer,以及评分点(基于answer,哪个是需要回答出来的,答案的维度都有哪些,每个值多少分)Step3,将 answer’ 与 answer进行比对,按照评分点进行打分,超过一定的分数则正确,否则回答不正确。如果普通项目,用rerank模型就可以,如果要求很高,可以用大模型,但是使用大模型的话,成本比较高。

2025-09-18 18:12:17 60

原创 Model Context Protocol (MCP)

什么是 MCP(Model Context Protocol)MCP 是一个由 Anthropic 在 2024 年提出的 开放标准 / 协议,目的是标准化大语言模型(LLM)与外部工具、数据源、提示(prompts)之间的交互。通俗地说,就是让 AI 应用(客户端)和提供工具/数据/上下文的服务(服务器)之间,有一个统一、安全、可组合的方式去通信。strstrstrstrstr📌 含义:mcpServers 表示 MCP 插件服务器列表“amap-maps” 是你定义的服务名。

2025-09-17 16:35:25 67

原创 【大模型应用】Function Calling与协作

import os# 定义资源文件根目录# 配置 DashScopedashscope.api_key = os.getenv('DASHSCOPE_API_KEY', '') # 从环境变量获取 API Keydashscope.timeout = 30 # 设置超时时间为 30 秒# 函数描述 描述函数的名字、用途、参数类型,这是 Function Calling 的 Schema,模型会根据它来决定是否调用函数。"description": "获取指定位置的当前天气情况",

2025-09-17 14:44:54 64

原创 【大模型】LongChain多任务应用开发

LongChain + Deepseek + Faiss 打造RAGLongChain的功能跟大模型中的 Function Call 类似。

2025-09-11 14:32:04 1006

原创 【大模型07】RAG高级技术与实战

embedding 过程中,神经网络的输入=单词,输出=输出 = 单词(作为邻居)的概率Q:怎么把调用模型API改为服务器部署好的大模型,另外知识库单个文件改为文件夹现在使用的是 dashscope 接口,我们也可以部署自己的大模型,通过 http serivce,按照dashscope/openai 接口进行返回内容server填写自己的 api url即可faiss。

2025-09-09 11:49:52 995

原创 【大模型应用】06RAG embedding+LLM问答系统

ChatPDF-Faiss 是一个基于 LangChain 和 OpenAI 的 PDF 文档问答系统。该系统能够读取 PDF 文件,提取文本内容,并使用向量数据库(FAISS)构建知识库,从而实现对 PDF 文档内容的智能问答功能。系统还能够追踪回答来源的页码,提供参考信息。企业文档问答:合同、考核办法、制度文档知识库构建:PDF/文本向量化存储语义检索:快速找到相关信息问答系统:结合向量检索 + LLM 生成自然语言答案溯源能力:可追踪答案来源页码。

2025-09-05 11:17:44 74

原创 [大模型06]RAG技术与应用-理论

• 检索增强生成,是一种结合信(Generation)的技术• RAG技术通过实时检索相关文档或信息,并将其作为,从而提高生成结果的时效性和准确性。

2025-09-04 17:48:42 123

原创 显存的基本概念和比较

这张图展示了训练时 显存占用的组成部分(假设 24GB 显存):🟦 模型参数:10GB🟩 激活值 (Activations):8GB🟨 Batch 数据:4GB🟥 优化器状态:2GB。

2025-09-04 17:00:40 607

原创 【大模型微调】医疗模型微调

模型部分:加载预训练模型 + LoRA 适配器。数据部分:读取多科室 CSV,统一成 instruction/input/output,然后格式化成 prompt。训练部分:使用 SFTTrainer,配置 LoRA + mixed precision + 小 batch。推理部分:启用 FastLanguageModel.for_inference(model),使用 TextStreamer 输出生成结果。保存部分:只保存 LoRA 权重和 tokenizer。

2025-09-01 18:26:01 55

原创 【无标题】训练、推理适用的数据类型

类型位宽指数尾数优点缺点FP3232823精度高,数值稳定显存大,计算慢FP1616510显存省,计算快易溢出,需要 loss scalingBF161687数值范围大,训练稳定尾数精度低INT88推理快,显存小训练不适用INT44超低显存,速度快精度损失大。

2025-09-01 17:40:35 412

原创 【大模型】大模型微调-RLHF(强化学习)

上篇介绍了PEFT(LORA)参数微调,这篇介绍RLHF(基于人类反馈的强化学习)

2025-09-01 17:08:16 77

原创 【大模型14】Fine-tuning与大模型优化1

get_peft_model 就是把 LoRA(PEFT 方法) 加载到模型中,Unsloth 封装了整个流程。你无需手动写 LoRA 矩阵操作,也无需自己管理量化和显存优化。

2025-08-29 18:15:45 77

原创 【大模型13】 视觉大模型与多模态

Internvideo2,新型的视频基础模型(VFM),在视频识别、视频文本任务和对话任务中取得了SOTA。在数据层面,通过语义分割视频并生成视频-音频-语音字幕,优先考虑时空一致性,从而提高了视频和文本之间的对齐。)),它严格要求 image_url 必须是 公网 URL 或 file_id,所以 file:// 就报错了。可以做车辆里程表识别、车辆承保、危险驾驶行为识别、损失评估、车辆事故要素提取等。模型表现:动作识别、时间动作识别、事件技术、视觉语言导航等。模型表现:动作识别、时间动作识别、

2025-08-29 15:52:25 86

原创 混淆 打包 编译

开发完成 → 混淆代码 → 打包成 EXE → 分发给客户。目标: 把一套python 代码,打包成exe。二、混淆打包 (该步骤我没有成功,有报错)

2025-08-28 16:34:34 202

原创 【天池】资金流入流出预测

题要求阿里天池大数据的比赛: https://tianchi.aliyun.com/competition/entrance/231573/information。

2025-08-25 17:22:21 653

原创 基于周期因子的资金流入流出预测

基本思想:把时间序列拆成“基数”(长期水平/趋势)和“周期波动”两部分。周期因子用于刻画固定周期内的相对涨落(如一周内、一个月内不同天的规律),通过因子对基数进行放大/缩小来得到每天的预测。核心步骤:数据聚合:按天聚合得到每日申购、赎回总额,并构造 weekday(0-6) 与 day_of_month(1-31)。计算基数:通常取历史总体均值或平滑均值(如7日均线)作为基数。计算周期因子:weekday 因子 = 各 weekday 的历史均值 / 全局均值。

2025-08-25 17:20:43 452

原创 资金流入流出预测baseline-prophet

Prophet 是由 Facebook 开发的开源时间序列预测工具,专为处理具有季节性趋势的时间序列数据而设计。以下是 Prophet 的核心功能、高阶使用方法及其在现实场景中的应用。

2025-08-22 10:34:16 342

原创 prophet

Prophet 是由 Facebook 开发的开源时间序列预测工具,专为处理具有季节性趋势的时间序列数据而设计。以下是 Prophet 的核心功能、高阶使用方法及其在现实场景中的应用。

2025-08-21 16:26:00 100

二手车交易价格预测 天池

二手车交易价格预测 天池

2025-07-10

python版libvsm gpu加速版资源

python版libvsm gpu加速版资源

2024-05-07

Pytorch 快速入门实战之 Fashionmnist

内涵数据集、Train.py Test.py 以及相应的说明文档。适合新手快速入门ptrorch。

2022-04-24

负荷预测(小时).rar

基于BP算法进行负荷预测。过程包括数据预处理、基于BP进行训练和测试,并将预测值与实际值进行了比较。

2020-04-24

基于机器学习进行房价预测

基于机器学习进行房价预测

2021-07-11

python编程从入门到实践-使用API

python编程从入门到实践-使用API

2020-12-30

基于随机森林的能耗预测

主要包含:1.分析特征的相关性;2.基于决策树分析特征的重要性;3.基于随机森林进行能耗预测 4.基于超参数调整优化参数

2020-12-17

数据分析-作业1.rar

本作业提供上证A股的数据1套(从提供的上海机场,宝钢股份,中国石油,中国银行4套股票数据中任意选1套)

2021-07-11

手写字符识别应用-作业4.rar

手写字符识别应用-作业4.rar

2021-07-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除