题目
给定n个非负整数a1、a2、…、an,每个数代表坐标中的一个点(i, ai)。画n条垂直线,使得第i条垂直线的两个端点分别为(i, ai)和(i, 0)。找出其中的两条线,使得它们与x轴共同构成的容器可以容纳最多的水。说明:不能倾斜容器,且n的取值至少为2。
在下图中,垂直线代表的输入数组为:[1, 8, 6, 2, 5, 4, 8, 3, 7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为49。
解析
这道题主要考察应聘者将实际问题抽象化,并转化为数学模型的能力。
我们最先想到的可能是“暴力法”,也就是遍历向量两遍。在第一遍遍历中,将向量中的元素(i, ai)和(i, 0)作为容器的左边界点。在第二遍遍历中,将向量中的元素(j, aj)和(j, 0)作为容器的右边界点。有了左边界点和右边界点,我们就可以计算出容器的容量。具体的实现,可以参考下面的示例代码。
fn get_max_capacity(height: &[i32]) -> i32 {
let mut max_capacity = 0;
for i in 0..height.len() - 1 {
for j in i + 1..height.len() {
let capacity = height[i].min(height[j]) * (j - i) as i32;
max_capacity = max_capacity.max(capacity);
}
}
max_capacity
}
fn main() {
let heights = vec![1, 8, 6, 2, 5, 4, 8, 3, 7];
let max_capacity = get_max_capacity(&heights);
println!("{}", max_capacity);
}
“暴力法”会遍历所有可能的容器的组合,计算它们的容量,并找出最大的容量。这种方法的时间复杂度为O(n^2),如果容器数量比较大,效率会非常低。
还有时间复杂度更优的方法吗?答案是肯定的,我们可以使用双指针法。双指针法背后的原理在于:两条线段之间形成的区域,总是会受到其中较短那条线段的限制;另外,两条线段距离越远,得到的面积就越大。
最开始,我们考虑由最外围两条线段组成的区域。现在,为了使面积最大化,我们需要考虑更长的两条线段之间的区域。如果我们试图将指向较长线段的指针向内侧移动,矩形区域的面积将受限于较短的线段,而不会获得增加。但是,移动指向较短线段的指针尽管造成了矩形宽度的减小,但却可能会增大面积。这是因为,移动较短线段的指针会得到一条相对较长的线段,这可以平衡由宽度减小而引起的面积减小。
双指针法的具体实现步骤如下:
1、定义两个指针left和right,分别指向向量的第一个和最后一个元素。
2、计算当前两个指针指向的高度,乘以两个指针之间的距离,记为area。
3、如果area大于最大容量max_area,则更新max_area为area的值。
4、比较left和right指向的高度height[left]和height[right],如果height[left]小于等于height[right],则将left指针右移一位。否则,将right指针左移一位。
5、重复步骤2到4,直到left指针大于等于right指针,此时的max_area即为盛最多水的容器的容量。
下面,给出双指针法的示例代码。
fn get_max_capacity(height: &[i32]) -> i32 {
let mut n_left = 0;
let mut n_right = height.len() - 1;
let mut n_max_capacity = 0;
while n_left < n_right {
let n_capacity = height[n_left].min(height[n_right]) * (n_right - n_left) as i32;
n_max_capacity = n_max_capacity.max(n_capacity);
if height[n_left] <= height[n_right] {
n_left += 1;
} else {
n_right -= 1;
}
}
n_max_capacity
}
fn main() {
let heights = vec![1, 8, 6, 2, 5, 4, 8, 3, 7];
let n_max_capacity = get_max_capacity(&heights);
println!("{}", n_max_capacity);
}
总结
通过这道题,我们学习了双指针法。双指针法是一种常见的算法思想,通常用于处理数组、链表等数据结构中的问题。双指针法的优点在于其时间复杂度比较低,为O(n),其中,n为容器数量。同时,双指针法也非常易于理解和实现。