这个算法是健壮的(数学术语)。我们通过选主元的方法来弥补顺序Gauss消元法的弊端,增加了pivrow和pivcol来记录包含主元素的行和列。由线性代数行列变换的知识知道,增广益矩阵行变换时,方程的解不变,但是列变换时,未知数的顺序发生了交换,因此需要记录列交换的信息在pivcol中,以便求解后还原。
全选主元高斯消元法的代码如下:
这个算法是健壮的(数学术语)。我们通过选主元的方法来弥补顺序Gauss消元法的弊端,增加了pivrow和pivcol来记录包含主元素的行和列。由线性代数行列变换的知识知道,增广益矩阵行变换时,方程的解不变,但是列变换时,未知数的顺序发生了交换,因此需要记录列交换的信息在pivcol中,以便求解后还原。
全选主元高斯消元法的代码如下: