题目链接:http://hihocoder.com/problemset/problem/1077
线段树单点更新,区间最小值。
#include <iostream>
#include <cstdio>
using namespace std;
#define INF 0x7fffffff
const int max_n = 1e6+5;
int n;
// 存储线段树的全局数组
int seg[max_n<<2];
// 初始化
void init( int n_ ) {
// 为了简单起见,把元素个数扩大到2的幂
n = 1;
while ( n < n_ ) n *= 2;
// 把所有的值都设为 INF
for ( int i = 0 ; i < 2*n-1 ; ++ i ) {
seg[i] = INF;
}
}
// 把第 k个值 (0-indexed) 更新为 x
void update( int k, int x ) {
// 叶子节点
k += n-1;
seg[k] = x;
// 向上更新
while ( k > 0 ) {
k = (k-1)/2;
seg[k] = min(seg[2*k+1], seg[2*k+2]);
}
}
// 求 [a,b)的最小值
// 后面的参数是为了计算起来方便而传入的
// k 是节点的编号 l,r 表示这个节点对应的是 [l,r) 区间
// 在外部调用时 用 query(a, b, 0, 0, n);
int query( int a, int b, int k, int l, int r ) {
// 如果 [a,b) 和 [l,r) 不相交 则返回 INF
if ( a >= r || b <= l ) return INF;
// 如果 [a,b) 完全包含 [l,r) 则返回当前节点值
if ( a <= l && b >= r ) return seg[k];
// 否则返回两个孩子节点中较小者
else {
int y1 = query(a,b,2*k+1,l,(l+r)/2);
int y2 = query(a,b,2*k+2,(l+r)/2,r);
return min(y1, y2);
}
}
int main()
{
int N, M;
int op, x, y;
scanf( "%d", &N );
init(N);
for( int i = 0 ; i < N ; ++ i ) {
scanf( "%d", &x );
update(i,x);
}
scanf( "%d", &M );
for ( int i = 0 ; i < M ; ++ i ) {
scanf( "%d%d%d", &op, &x, &y );
if ( op == 0 ) {
printf( "%d\n", query(x-1,y,0,0,n) );
} else {
update(x-1, y);
}
}
return 0;
}