hihocoder1077 RMQ问题再临-线段树

题目链接:http://hihocoder.com/problemset/problem/1077

线段树单点更新,区间最小值。

#include <iostream>
#include <cstdio>
using namespace std;

#define INF 0x7fffffff

const int max_n = 1e6+5;
int n;
// 存储线段树的全局数组 
int seg[max_n<<2];

// 初始化 
void init( int n_ ) {
	// 为了简单起见,把元素个数扩大到2的幂 
	n = 1;
	while ( n < n_ ) n *= 2;
	// 把所有的值都设为 INF 
	for ( int i = 0 ; i < 2*n-1 ; ++ i ) {
		seg[i] = INF;
	}
}

// 把第 k个值 (0-indexed) 更新为 x 
void update( int k, int x ) {
	// 叶子节点 
	k += n-1;
	seg[k] = x;
	// 向上更新 
	while ( k > 0 ) {
		k = (k-1)/2;
		seg[k] = min(seg[2*k+1], seg[2*k+2]);
	}
}

// 求 [a,b)的最小值
// 后面的参数是为了计算起来方便而传入的
// k 是节点的编号   l,r 表示这个节点对应的是 [l,r) 区间
// 在外部调用时 用 query(a, b, 0, 0, n); 
int query( int a, int b, int k, int l, int r ) {
	// 如果 [a,b) 和 [l,r) 不相交 则返回 INF 
	if ( a >= r || b <= l ) return INF;
	// 如果 [a,b) 完全包含 [l,r) 则返回当前节点值 
	if ( a <= l && b >= r ) return seg[k];
	// 否则返回两个孩子节点中较小者
	else {
		int y1 = query(a,b,2*k+1,l,(l+r)/2);
		int y2 = query(a,b,2*k+2,(l+r)/2,r);
		return min(y1, y2);
	} 
}

int main()
{
	int N, M;
	int op, x, y;
	
	scanf( "%d", &N );
	init(N);
	
	for( int i = 0 ; i < N ; ++ i ) {
		scanf( "%d", &x );
		update(i,x);
	}
	
	scanf( "%d", &M );
	for ( int i = 0 ; i < M ; ++ i ) {
		scanf( "%d%d%d", &op, &x, &y );
		if ( op == 0 ) {
			printf( "%d\n", query(x-1,y,0,0,n) );
		} else {
			update(x-1, y);
		}
	}
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值