机器学习
文章平均质量分 96
算法研究与论文笔记
zzzyzh
一个不会踢足球的棋手不是好程序员
展开
-
ML【3】:FPGroth Tree 算法
在Apriori算法原理总结中,我们对Apriori算法的原理做了总结。作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O 是很大的瓶颈。为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率有关AprioriML【2】:Apriori 算法FP-growth算法的优点是它不需要生成候选项集,因此可以避免Apriori算法中的大量重复计算。另外,由于FP树的压缩性质,FP-growth。原创 2023-03-31 19:50:05 · 441 阅读 · 0 评论 -
ML【2】:Apriori 算法
频繁模式挖掘是一种数据挖掘技术,旨在发现数据集中出现频率较高的模式。这些模式可能是项目集中的频繁项集,或者是序列数据中的频繁子序列。常见的频繁模式挖掘算法包括Apriori算法、FP-growth算法等。这些算法可以在大规模数据集中高效地发现频繁模式,并提供支持度、置信度等指标来评估模式的重要性和可靠性。本文主要介绍了什么是频繁模式,和频繁模式常见的第一个算法Apriori算法。频繁模式指在一个数据集中频繁出现的模式(如一组项目、子序列、子结构等)原创 2023-03-31 16:27:50 · 376 阅读 · 1 评论 -
ML【1】:决策树
决策树是一种解决分类问题的算法在分类问题中,表示基于特征对实例进行分类的过程,可以认为是 的集合,也可以认为是定义在特征空间与类空间上的条件概率分布本文基于北京邮电大学周芮西老师开设的公选课——统计机器学习及应用实践决策树是典型的分类方法相关概念决策树的特点决策树技术发现数据模式和规则的核心是归纳算法(Inductive algorithm)归纳(归纳推理)归纳学习由于依赖于检验数据,因此又称为检验学习决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好原创 2022-09-30 01:29:07 · 814 阅读 · 0 评论