
MedSeg Big Model
文章平均质量分 97
主要将视角集中于分割基础大模型和医学图像处理中分割大模型
zzzyzh
一个不会踢足球的棋手不是好程序员
展开
-
Work【2】:PGP-SAM —— 无需额外提示的自动化 SAM!
和大家分享一下我们发表在ISBI 2025上的论文:。代码已经开源!!!期待您的 Star!!!PGP-SAMSegment Anything Model (SAM) 展现了强大且多功能的图像分割能力,并支持直观的提示交互。然而,将SAM定制应用于医学图像分割需要大量像素级标注和精确的点/框提示设计。为解决这些挑战,我们提出了PGP-SAM——一种基于原型的新型少样本调优方法,通过有限样本替代繁琐的手动提示设计。核心思想是利用类间和类内原型捕获类别特异性知识与关联关系。原创 2025-03-14 15:44:35 · 1386 阅读 · 1 评论 -
MSA【5】:SAM-Med2D
由于医学图像和自然图像之间存在较大差异,以及缺少大规模医学图像基准数据集,这是导致AI在医学领域进展缓慢的原因之一。构建大规模基准数据集和可靠的基线模型,能够推动AI在医疗领域的快速发展,加速医疗向更通用的方向转变。上海 AI-Lab 提出了 SAM-Med2D,标志着大模型在医学图像分割的里程碑。SAM-Med2DSAM-Med2D:打破自然图像与医学图像的领域鸿沟,医疗版 SAM 开源了!SAM-Med2D构建了一个涵盖各种模式和对象的大规模医学图像分割数据集。原创 2024-01-26 11:47:35 · 1577 阅读 · 1 评论 -
MSA【4】:DeSAM
基于深度学习的自动医学图像分割模型经常会出现领域偏移的问题,即在源领域训练的模型不能很好地泛化到其他未见领域。为此本文提出 DeSAM,通过解耦 image embedding 和 prompt token 来提高 SAM 的效果基于深度学习的自动医学图像分割模型经常会出现领域偏移的问题,即在源领域训练的模型不能很好地泛化到其他未见领域Segment Anything Model(SAM)在提高医学图像分割的跨域鲁棒性方面展现出了潜力。然而,与人工提示相比,SAM。原创 2023-12-21 20:35:15 · 1159 阅读 · 2 评论 -
MSA【3】:SAMed
SAMed是基于大规模图像分割模型 Segment Anything Model (SAM) 构建的,旨在探索将大规模模型定制化应用于医学图像分割的新研究范式本文提出了医学图像分割的通用解决方案SAMed对SAM图像编码器采用基于低秩的微调策略(LoRA),并在标注的医学图像分割数据集上对其与提示编码器和掩码解码器一起进行微调Warmup微调策略和AdamW优化器使SAMed成功收敛并降低了损失与SAM不同,SAMed可以对医学图像进行语义分割。原创 2023-12-19 16:40:57 · 1851 阅读 · 1 评论 -
SAM【2】:Personalize-SAM
PerSAM作为一种无需训练的的个性化方法,仅使用一次性数据,即用户提供的图像和粗略的掩码来高效地定制SAM。但同时,PerSAM更像是一种对高效选择 prompt 的尝试,而并非对SAM进行微调,如果想要将PerSAM应用在自然图像以外的数据集中,可能不会是一个好的选择。尽管SAM具有通用性,但针对特定视觉概念定制SAM而无需人工提示的问题仍有待探索。本文为SAM提出了一种无需训练的个性化方法,称为PerSAM。在只给定一张带有参考掩码的图像的情况下,PerSAM首先通过位置先验(原创 2023-07-24 11:00:00 · 1020 阅读 · 3 评论 -
MSA【2】:Medical SAM Adapter
随着研究的深入,SAM被拓展到医学图像分割领域。但研究表明,直接将SAM用于医学图像分割,效果非常差。但医疗数据难以获取以及高昂的注释成本迫切的需要一个基础模型来打卡局面,不仅仅在图像分割层面,更是在数据注释方面。本文介绍了第一个将Adaption微调方法用于SAM的模型,该模型在 19 个数据集上都取得了惊人的效果。这为后续SAM的研究和 fine-tune 工作,提供了一个有效的参考和指导。最近的许多评测任务表明,SAM一个自然的问题是,如何将SAM。原创 2023-07-21 12:00:00 · 1497 阅读 · 1 评论 -
MSA【1】:Segment Anything Model for Medical Image Analysis: an Experimental Study
本文主要介绍了 Segment Anything Model 在自然图像分割领域取得显著成就后,较早的将 SAM 在医学图像领域做评测的工作。是一个在超过 10 亿个注释(主要是自然图像)上训练的基础模型,旨在以交互方式分割用户定义的感兴趣对象。尽管该模型在自然图像上的表现令人印象深刻,但目前尚不清楚该模型在转向医学图像领域时会受到怎样的影响。本文对SAM分割医学图像的能力进行了广泛的评估,评估对象包括来自不同模式和解剖学的 11 个医学影像数据集。研究表明,SAM。原创 2023-07-17 19:24:36 · 1025 阅读 · 2 评论 -
SAM【1】:Segment Anything
Segment Anthing 是 Meta 开源的第一个分割大模型,最近在 CV 领域掀起了一阵大模型热潮。短短几天时间内,各种二创、测评层出不穷。同时,Meta 公布了模型的Demo,让研究人员可以抢先体验SAM的神奇和强大之处。视觉大模型与自然语言大模型类似,它的主要目的是通过一个模型来解决用户的所有问题。受制于图像数据更广泛的图片类型和任务,目前 SAM 主要解决的是最传统也是应用最广泛的分割任务。SAM。原创 2023-06-25 08:59:49 · 1107 阅读 · 2 评论